The Effect of 2-Thiocyanatopyridine Derivative 11026103 on Burkholderia Cenocepacia: Resistance Mechanisms and Systemic Impact
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-28017A
Czech Health Research Council of Ministry of Health, Czech Republic
Agreement No. 14.616.21.0065; unique identifier RFMEFI61616X0065
Ministry of Education and Science of the Russian Federation
PubMed
31546596
PubMed Central
PMC6963507
DOI
10.3390/antibiotics8040159
PII: antibiotics8040159
Knihovny.cz E-zdroje
- Klíčová slova
- Burkholderia cenocepacia, RNA-Seq, Tn-Seq, chemical genetics, chemical mutagenesis, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
Bacteria of the Burkholderia cepacia complex (Bcc) are associated with significant decline of lung functions in cystic fibrosis patients. Bcc infections are virtually impossible to eradicate due to their irresponsiveness to antibiotics. The 2-thiocyanatopyridine derivative 11026103 is a novel, synthetic compound active against Burkholderia cenocepacia. To characterize mechanisms of resistance to 11026103, B. cenocepacia was subjected to chemical mutagenesis, followed by whole genome sequencing. Parallel mutations in resistant isolates were localized in a regulatory protein of the efflux system Resistance-Nodulation-Division (RND)-9 (BCAM1948), RNA polymerase sigma factor (BCAL2462) and its cognate putative anti-sigma factor (BCAL2461). Transcriptomic analysis identified positive regulation of a major facilitator superfamily (MFS) efflux system BCAL1510-1512 by BCAL2462. Artificial overexpression of both efflux systems increased resistance to the compound. The effect of 11026103 on B. cenocepacia was analyzed by RNA-Seq and a competitive fitness assay utilizing an essential gene knockdown mutant library. 11026103 exerted a pleiotropic effect on transcription including profound downregulation of cluster of orthologous groups (COG) category "Translation, ribosomal structure, and biogenesis". The competitive fitness assay identified many genes which modulated susceptibility to 11026103. In summary, 11026103 exerts a pleiotropic cellular response in B. cenocepacia which can be prevented by efflux system-mediated export.
Zobrazit více v PubMed
Mahenthiralingam E., Urban T.A., Goldberg J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 2005;3:144–156. doi: 10.1038/nrmicro1085. PubMed DOI
Webb A.K., Govan J.R. Burkholderia cepacia: Another twist and a further threat. Thorax. 1998;53:333–334. doi: 10.1136/thx.53.5.333. PubMed DOI PMC
Nunvar J., Capek V., Fiser K., Fila L., Drevinek P. What matters in chronic Burkholderia cenocepacia infection in cystic fibrosis: Insights from comparative genomics. PLoS Pathog. 2017;13:e1006762. doi: 10.1371/journal.ppat.1006762. PubMed DOI PMC
Nzula S., Vandamme P., Govan J.R. Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 2002;50:265–269. doi: 10.1093/jac/dkf137. PubMed DOI
Aaron S.D., Vandemheen K.L., Ferris W., Fergusson D., Tullis E., Haase D., Berthiaume Y., Brown N., Wilcox P., Yozghatlian V., et al. Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: A randomised, double-blind, controlled clinical trial. Lancet. 2005;366:463–471. doi: 10.1016/S0140-6736(05)67060-2. PubMed DOI
Zhou J., Chen Y., Tabibi S., Alba L., Garber E., Saiman L. Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2007;51:1085–1088. doi: 10.1128/AAC.00954-06. PubMed DOI PMC
Salina E., Ryabova O., Kaprelyants A., Makarov V. New 2-thiopyridines as potential candidates for killing both actively growing and dormant Mycobacterium tuberculosis cells. Antimicrob. Agents Chemother. 2014;58:55–60. doi: 10.1128/AAC.01308-13. PubMed DOI PMC
Scoffone V.C., Spadaro F., Udine C., Makarov V., Fondi M., Fani R., De Rossi E., Riccardi G., Buroni S. Mechanism of resistance to an antitubercular 2-thiopyridine derivative that is also active against Burkholderia cenocepacia. Antimicrob. Agents Chemother. 2014;58:2415–2417. doi: 10.1128/AAC.02438-13. PubMed DOI PMC
Buroni S., Pasca M.R., Flannagan R.S., Bazzini S., Milano A., Bertani I., Venturi V., Valvano M.A., Riccardi G. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiol. 2009;9:200. doi: 10.1186/1471-2180-9-200. PubMed DOI PMC
Cupples C.G., Miller J.H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc. Natl. Acad. Sci. USA. 1989;86:5345–5349. doi: 10.1073/pnas.86.14.5345. PubMed DOI PMC
Scoffone V.C., Ryabova O., Makarov V., Iadarola P., Fumagalli M., Fondi M., Fani R., De Rossi E., Riccardi G., Buroni S. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia. Front. Microbiol. 2015;6:815. doi: 10.3389/fmicb.2015.00815. PubMed DOI PMC
Alikhan N.F., Petty N.K., Ben Zakour N.L., Beatson S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011;12:402. doi: 10.1186/1471-2164-12-402. PubMed DOI PMC
Burns P.A., Allen F.L., Glickman B.W. DNA sequence analysis of mutagenicity and site specificity of ethyl methanesulfonate in Uvr+ and UvrB− strains of Escherichia coli. Genetics. 1986;113:811–819. PubMed PMC
Du W.L., Dubarry N., Passot F.M., Kamgoué A., Murray H., Lane D., Pasta F. Orderly replication and segregation of the four replicons of Burkholderia cenocepacia J2315. PLoS Genet. 2016;12:e1006172. doi: 10.1371/journal.pgen.1006172. PubMed DOI PMC
Menard A., de Los Santos P.E., Graindorge A., Cournoyer B. Architecture of Burkholderia cepacia complex sigma70 gene family: Evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genom. 2007;8:308. doi: 10.1186/1471-2164-8-308. PubMed DOI PMC
Chauhan R., Ravi J., Datta P., Chen T., Schnappinger D., Bassler K.E., Balázsi G., Gennaro M.L. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat. Commun. 2016;7:11062. doi: 10.1038/ncomms11062. PubMed DOI PMC
Badran A.H., Liu D.R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 2015;6:8425. doi: 10.1038/ncomms9425. PubMed DOI PMC
Hogan A.M., Scoffone V.C., Makarov V., Gislason A.S., Tesfu H., Stietz M.S., Brassinga A.K.C., Domaratzki M., Li X., Azzalin A., et al. Competitive fitness of essential gene knockdowns reveals a broad-spectrum antibacterial inhibitor of the cell division protein FtsZ. Antimicrob. Agents Chemother. 2018 doi: 10.1128/AAC.01231-18. PubMed DOI PMC
Bloodworth R.A., Gislason A.S., Cardona S.T. Burkholderia cenocepacia conditional growth mutant library created by random promoter replacement of essential genes. Microbiologyopen. 2013;2:243–258. doi: 10.1002/mbo3.71. PubMed DOI PMC
Nichols R.J., Sen S., Choo Y.J., Beltrao P., Zietek M., Chaba R., Lee S., Kazmierczak K.M., Lee K.J., Wong A., et al. Phenotypic landscape of a bacterial cell. Cell. 2011;144:143–156. doi: 10.1016/j.cell.2010.11.052. PubMed DOI PMC
Peters J.M., Colavin A., Shi H., Czarny T.L., Larson M.H., Wong S., Hawkins J.S., Lu C.H.S., Koo B.M., Marta E., et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell. 2016;165:1493–1506. doi: 10.1016/j.cell.2016.05.003. PubMed DOI PMC
Salina E.G., Ryabova O., Vocat A., Nikonenko B., Cole S.T., Makarov V. New 1-hydroxy-2-thiopyridine derivatives active against both replicating and dormant Mycobacterium tuberculosis. J. Infect. Chemother. 2017;23:794–797. doi: 10.1016/j.jiac.2017.04.012. PubMed DOI
Salina E.G., Huszár S., Zemanová J., Keruchenko J., Riabova O., Kazakova E., Grigorov A., Azhikina T., Kaprelyants A., Mikušová K., et al. Copper-related toxicity in replicating and dormant Mycobacterium tuberculosis caused by 1-hydroxy-5-R-pyridine-2(1H)-thiones. Metallomics. 2018;10:992–1002. doi: 10.1039/C8MT00067K. PubMed DOI
Kempes C.P., van Bodegom P.M., Wolpert D., Libby E., Amend J., Hoehler T. Drivers of bacterial maintenance and minimal energy requirements. Front. Microbiol. 2017;8:31. doi: 10.3389/fmicb.2017.00031. PubMed DOI PMC
Shaw K.J., Miller N., Liu X., Lerner D., Wan J., Bittner A., Morrow B.J. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J. Mol. Microbiol. Biotechnol. 2003;5:105–122. doi: 10.1159/000069981. PubMed DOI
Lemke J.J., Sanchez-Vazquez P., Burgos H.L., Hedberg G., Ross W., Gourse R.L. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc. Natl. Acad. Sci. USA. 2011;108:5712–5717. doi: 10.1073/pnas.1019383108. PubMed DOI PMC
Cardona S.T., Valvano M.A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid. 2005;54:219–228. doi: 10.1016/j.plasmid.2005.03.004. PubMed DOI
Holden M.T., Seth-Smith H.M., Crossman L.C., Sebaihia M., Bentley S.D., Cerdeño-Tárraga A.M., Thomson N.R., Bason N., Quail M.A., Sharp S., et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J. Bacteriol. 2009;191:261–277. doi: 10.1128/JB.01230-08. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Winsor G.L., Khaira B., Van Rossum T., Lo R., Whiteside M.D., Brinkman F.S. The Burkholderia Genome Database: Facilitating flexible queries and comparative analyses. Bioinformatics. 2008;24:2803–2804. doi: 10.1093/bioinformatics/btn524. PubMed DOI PMC
Bazzini S., Udine C., Sass A., Pasca M.R., Longo F., Emiliani G., Fondi M., Perrin E., Decorosi F., Viti C., et al. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS ONE. 2011;6:e18902. doi: 10.1371/journal.pone.0018902. PubMed DOI PMC
Buroni S., Matthijs N., Spadaro F., Van Acker H., Scoffone V.C., Pasca M.R., Riccardi G., Coenye T. Differential Roles of RND Efflux Pumps in Antimicrobial Drug Resistance of Sessile and Planktonic Burkholderia cenocepacia Cells. Antimicrob. Agents Chemother. 2014;58:7424–7429. doi: 10.1128/AAC.03800-14. PubMed DOI PMC
Coenye T., Van Acker H., Peeters E., Sass A., Buroni S., Riccardi G., Mahenthiralingam E. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother. 2011;55:1912–1919. doi: 10.1128/AAC.01571-10. PubMed DOI PMC
Rushton L., Sass A., Baldwin A., Dowson C.G., Donoghue D., Mahenthiralingam E. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob. Agents Chemother. 2013;57:2972–2980. doi: 10.1128/AAC.00140-13. PubMed DOI PMC
Perrin E., Maggini V., Maida I., Gallo E., Lombardo K., Madarena M.P., Buroni S., Scoffone V.C., Firenzuoli F., Mengoni A., et al. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: Insights into mechanism(s) of action. Future Microbiol. 2018;13:59–67. doi: 10.2217/fmb-2017-0121. PubMed DOI
Venter H., Mowla R., Ohene-Agyei T., Ma S. RND-type drug efflux pumps from Gram-negative bacteria: Molecular mechanism and inhibition. Front. Microbiol. 2015;6:377. doi: 10.3389/fmicb.2015.00377. PubMed DOI PMC