What matters in chronic Burkholderia cenocepacia infection in cystic fibrosis: Insights from comparative genomics

. 2017 Dec ; 13 (12) : e1006762. [epub] 20171211

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29228063
Odkazy

PubMed 29228063
PubMed Central PMC5739508
DOI 10.1371/journal.ppat.1006762
PII: PPATHOGENS-D-17-01865
Knihovny.cz E-zdroje

Burkholderia cenocepacia causes severe pulmonary infections in cystic fibrosis (CF) patients. Since the bacterium is virtually untreatable by antibiotics, chronic infections persist for years and might develop into fatal septic pneumonia (cepacia syndrome, CS). To devise new strategies to combat chronic B. cenocepacia infections, it is essential to obtain comprehensive knowledge about their pathogenesis. We conducted a comparative genomic analysis of 32 Czech isolates of epidemic clone B. cenocepacia ST32 isolated from various stages of chronic infection in 8 CF patients. High numbers of large-scale deletions were found to occur during chronic infection, affecting preferentially genomic islands and nonessential replicons. Recombination between insertion sequences (IS) was inferred as the mechanism behind deletion formation; the most numerous IS group was specific for the ST32 clone and has undergone transposition burst since its divergence. Genes functionally related to transition metal metabolism were identified as hotspots for deletions and IS insertions. This functional category was also represented among genes where nonsynonymous point mutations and indels occurred parallelly among patients. Another category exhibiting parallel mutations was oxidative stress protection; mutations in catalase KatG resulted in impaired detoxification of hydrogen peroxide. Deep sequencing revealed substantial polymorphism in genes of both categories within the sputum B. cenocepacia ST32 populations, indicating extensive adaptive evolution. Neither oxidative stress response nor transition metal metabolism genes were previously reported to undergo parallel evolution during chronic CF infection. Mutations in katG and copper metabolism genes were overrepresented in patients where chronic infection developed into CS. Among professional phagocytes, macrophages use both hydrogen peroxide and copper for their bactericidal activity; our results thus tentatively point to macrophages as suspects in pathogenesis towards the fatal CS.

Zobrazit více v PubMed

Surette MG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc. 2014;11 Suppl 1: S61–5. doi: 10.1513/AnnalsATS.201306-159MG . PubMed DOI

Loveridge EJ, Jones C, Bull MJ, Moody SC, Kahl MW, Khan Z, et al. Reclassification of the specialized metabolite producer Pseudomonas mesoacidophila ATCC 31433 as a member of the Burkholderia cepacia complex. J Bacteriol. 2017;199(13). Epub 2017/06/13. doi: 10.1128/JB.00125-17 . PubMed DOI PMC

Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr. 1984;104(2):206–10. PubMed

Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 2006;14(6):277–86. Epub 2006/05/08. doi: 10.1016/j.tim.2006.04.006 . PubMed DOI

Flume PA. Pulmonary complications of cystic fibrosis. Respir Care. 2009;54(5):618–27. . PubMed

Mahenthiralingam E, Baldwin A, Vandamme P. Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol. 2002;51(7):533–8. doi: 10.1099/0022-1317-51-7-533 . PubMed DOI

Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, et al. DNA-Based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol. 2000;38(9):3165–73. ; PubMed Central PMCID: PMCPMC87345. PubMed PMC

Gautam V, Patil PP, Kumar S, Midha S, Kaur M, Kaur S, et al. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India. Sci Rep. 2016;6:35769 Epub 2016/10/21. doi: 10.1038/srep35769 ; PubMed Central PMCID: PMCPMC5073313. PubMed DOI PMC

Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, et al. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis. 2007;13(3):458–61. doi: 10.3201/eid1303.060403 ; PubMed Central PMCID: PMCPMC2725883. PubMed DOI PMC

Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191(1):261–77. doi: 10.1128/JB.01230-08 ; PubMed Central PMCID: PMCPMC2612433. PubMed DOI PMC

Manno G, Dalmastri C, Tabacchioni S, Vandamme P, Lorini R, Minicucci L, et al. Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian Cystic Fibrosis Center. J Clin Microbiol. 2004;42(4):1491–7. doi: 10.1128/JCM.42.4.1491-1497.2004 ; PubMed Central PMCID: PMCPMC387599. PubMed DOI PMC

Zlosnik JE, Zhou G, Brant R, Henry DA, Hird TJ, Mahenthiralingam E, et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience. Ann Am Thorac Soc. 2015;12(1):70–8. doi: 10.1513/AnnalsATS.201408-395OC . PubMed DOI

Speert DP, Henry D, Vandamme P, Corey M, Mahenthiralingam E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis. 2002;8(2):181–7. doi: 10.3201/eid0802.010163 ; PubMed Central PMCID: PMCPMC3369581. PubMed DOI PMC

Vasiljevic ZV, Novovic K, Kojic M, Minic P, Sovtic A, Djukic S, et al. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology. Eur J Clin Microbiol Infect Dis. 2016;35(8):1277–84. Epub 2016/05/13. doi: 10.1007/s10096-016-2662-4 . PubMed DOI

Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Semenov AN, Lasareva AV, et al. The variability of the order Burkholderiales representatives in the healthcare units. Biomed Res Int. 2015;2015:680210 Epub 2015/05/31. doi: 10.1155/2015/680210 ; PubMed Central PMCID: PMCPMC4465658. PubMed DOI PMC

Sun L, Jiang RZ, Steinbach S, Holmes A, Campanelli C, Forstner J, et al. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med. 1995;1(7):661–6. . PubMed

Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect. 2010;16(7):821–30. doi: 10.1111/j.1469-0691.2010.03237.x . PubMed DOI

Drevinek P, Vosahlikova S, Cinek O, Vavrova V, Bartosova J, Pohunek P, et al. Widespread clone of Burkholderia cenocepacia in cystic fibrosis patients in the Czech Republic. J Med Microbiol. 2005;54(Pt 7):655–9. doi: 10.1099/jmm.0.46025-0 . PubMed DOI

Fila L, Dřevínek P. Burkholderia cepacia complex in cystic fibrosis in the post-epidemic period: multilocus sequence typing-based approach. Folia Microbiol (Praha). 2017. Epub 2017/03/31. doi: 10.1007/s12223-017-0523-x . PubMed DOI

Dedeckova K, Kalferstova L, Strnad H, Vavrova J, Drevinek P. Novel diagnostic PCR assay for Burkholderia cenocepacia epidemic strain ST32 and its utility in monitoring infection in cystic fibrosis patients. J Cyst Fibros. 2013;12(5):475–81. Epub 2013/01/11. doi: 10.1016/j.jcf.2012.12.007 . PubMed DOI

Martina P, Feliziani S, Juan C, Bettiol M, Gatti B, Yantorno O, et al. Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. Int J Med Microbiol. 2014;304(8):1182–91. doi: 10.1016/j.ijmm.2014.08.011 . PubMed DOI

Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 2011;43(12):1275–80. doi: 10.1038/ng.997 ; PubMed Central PMCID: PMCPMC3245322. PubMed DOI PMC

Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP, Buskirk SW, et al. Long-term evolution of Burkholderia multivorans during a chronic cystic fibrosis infection reveals shifting forces of selection. mSystems. 2016;1(3). Epub 2016/05/24. doi: 10.1128/mSystems.00029-16 ; PubMed Central PMCID: PMCPMC5069766. PubMed DOI PMC

Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O, Campana S, et al. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol. 2015;15:218 Epub 2015/10/19. doi: 10.1186/s12866-015-0563-9 ; PubMed Central PMCID: PMCPMC4612410. PubMed DOI PMC

Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC, Currie BJ, et al. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven Australasian cystic fibrosis patients. MBio. 2017;8(2). Epub 2017/04/11. doi: 10.1128/mBio.00356-17 ; PubMed Central PMCID: PMCPMC5388805. PubMed DOI PMC

Agnoli K, Schwager S, Uehlinger S, Vergunst A, Viteri DF, Nguyen DT, et al. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol Microbiol. 2012;83(2):362–78. Epub 2011/12/16. doi: 10.1111/j.1365-2958.2011.07937.x . PubMed DOI

Fernández-González E, Bakioui S, Gomes MC, O'Callaghan D, Vergunst AC, Sangari FJ, et al. A functional oriT in the Ptw plasmid of Burkholderia cenocepacia can be recognized by the R388 relaxase TrwC. Front Mol Biosci. 2016;3:16 Epub 2016/05/03. doi: 10.3389/fmolb.2016.00016 ; PubMed Central PMCID: PMCPMC4853378. PubMed DOI PMC

Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E. The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun. 2004;72(3):1537–47. doi: 10.1128/IAI.72.3.1537-1547.2004 ; PubMed Central PMCID: PMCPMC356040. PubMed DOI PMC

Sass AM, Schmerk C, Agnoli K, Norville PJ, Eberl L, Valvano MA, et al. The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia. ISME J. 2013;7(8):1568–81. doi: 10.1038/ismej.2013.36 ; PubMed Central PMCID: PMCPMC3721108. PubMed DOI PMC

Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics. 2015;16:667 Epub 2015/09/03. doi: 10.1186/s12864-015-1860-2 ; PubMed Central PMCID: PMCPMC4558774. PubMed DOI PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6. Epub 2014/11/20. doi: 10.1093/nar/gku1221 ; PubMed Central PMCID: PMCPMC4383992. PubMed DOI PMC

Dillon MM, Sung W, Lynch M, Cooper VS. The rate and molecular spectrum of spontaneous mutations in the GC-rich multichromosome genome of Burkholderia cenocepacia. Genetics. 2015;200(3):935–46. doi: 10.1534/genetics.115.176834 . PubMed DOI PMC

Subramoni S, Agnoli K, Eberl L, Lewenza S, Sokol PA. Role of Burkholderia cenocepacia afcE and afcF genes in determining lipid-metabolism-associated phenotypes. Microbiology. 2013;159(Pt 3):603–14. doi: 10.1099/mic.0.064683-0 . PubMed DOI

Lefebre M, Valvano M. In vitro resistance of Burkholderia cepacia complex isolates to reactive oxygen species in relation to catalase and superoxide dismutase production. Microbiology. 2001;147(Pt 1):97–109. doi: 10.1099/00221287-147-1-97 . PubMed DOI

Lefebre MD, Flannagan RS, Valvano MA. A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity. Microbiology. 2005;151(Pt 6):1975–85. doi: 10.1099/mic.0.27704-0 . PubMed DOI

Gennaris A, Ezraty B, Henry C, Agrebi R, Vergnes A, Oheix E, et al. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature. 2015;528(7582):409–12. Epub 2015/12/07. doi: 10.1038/nature15764 ; PubMed Central PMCID: PMCPMC4700593. PubMed DOI PMC

Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, et al. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem. 2004;279(48):50391–400. Epub 2004/09/07. doi: 10.1074/jbc.M408876200 . PubMed DOI

Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics. 2007;8:107 Epub 2007/04/23. doi: 10.1186/1471-2164-8-107 ; PubMed Central PMCID: PMCPMC1868760. PubMed DOI PMC

Fung DK, Ma Y, Xia T, Luk JC, Yan A. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. Mol Microbiol. 2016;100(5):774–87. Epub 2016/03/10. doi: 10.1111/mmi.13348 . PubMed DOI

Lee AH, Flibotte S, Sinha S, Paiero A, Ehrlich RL, Balashov S, et al. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Res. 2017;27(4):650–62. Epub 2017/03/21. doi: 10.1101/gr.213363.116 ; PubMed Central PMCID: PMCPMC5378182. PubMed DOI PMC

Murakami KS. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J Biol Chem. 2013;288(13):9126–34. Epub 2013/02/06. doi: 10.1074/jbc.M112.430900 ; PubMed Central PMCID: PMCPMC3610985. PubMed DOI PMC

Njuma OJ, Ndontsa EN, Goodwin DC. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Arch Biochem Biophys. 2014;544:27–39. Epub 2013/11/23. doi: 10.1016/j.abb.2013.11.007 . PubMed DOI

Casino P, Rubio V, Marina A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell. 2009;139(2):325–36. Epub 2009/10/01. doi: 10.1016/j.cell.2009.08.032 . PubMed DOI

Leitão JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, Moreira LM. Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol. 2010;87(1):31–40. doi: 10.1007/s00253-010-2528-0 . PubMed DOI

Loutet SA, Valvano MA. A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun. 2010;78(10):4088–100. doi: 10.1128/IAI.00212-10 ; PubMed Central PMCID: PMCPMC2950345. PubMed DOI PMC

Sousa SA, Feliciano JR, Pita T, Guerreiro SI, Leitão JH. Burkholderia cepacia complex regulation of virulence gene expression: a review. Genes (Basel). 2017;8(1). Epub 2017/01/19. doi: 10.3390/genes8010043 ; PubMed Central PMCID: PMCPMC5295037. PubMed DOI PMC

Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol. 2016;14(3):150–62. Epub 2016/01/19. doi: 10.1038/nrmicro.2015.13 ; PubMed Central PMCID: PMCPMC5053366. PubMed DOI PMC

Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14(11):751–64. Epub 2013/10/09. doi: 10.1038/nrg3483 . PubMed DOI

Wood TE, Burke JM, Rieseberg LH. Parallel genotypic adaptation: when evolution repeats itself. Genetica. 2005;123(1–2):157–70. ; PubMed Central PMCID: PMCPMC2442917. PubMed PMC

Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, et al. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet. 2014;46(1):82–7. doi: 10.1038/ng.2848 ; PubMed Central PMCID: PMCPMC3979468. PubMed DOI PMC

Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst Appl Microbiol. 2011;34(2):87–95. doi: 10.1016/j.syapm.2010.10.002 . PubMed DOI

Graindorge A, Menard A, Monnez C, Cournoyer B. Insertion sequence evolutionary patterns highlight convergent genetic inactivations and recent genomic island acquisitions among epidemic Burkholderia cenocepacia. J Med Microbiol. 2012;61(Pt 3):394–409. Epub 2011/10/06. doi: 10.1099/jmm.0.036822-0 . PubMed DOI

Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865–91. Epub 2014/02/26. doi: 10.1111/1574-6976.12067 . PubMed DOI PMC

Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 2005;33(19):6445–58. Epub 2005/11/07. doi: 10.1093/nar/gki954 ; PubMed Central PMCID: PMCPMC1278947. PubMed DOI PMC

Song H, Hwang J, Yi H, Ulrich RL, Yu Y, Nierman WC, et al. The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog. 2010;6(5):e1000922 Epub 2010/05/27. doi: 10.1371/journal.ppat.1000922 ; PubMed Central PMCID: PMCPMC2877748. PubMed DOI PMC

Bentley SD, Parkhill J. Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci. 2015;282(1821):20150488 doi: 10.1098/rspb.2015.0488 ; PubMed Central PMCID: PMCPMC4707741. PubMed DOI PMC

Drevinek P, Baldwin A, Lindenburg L, Joshi LT, Marchbank A, Vosahlikova S, et al. Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol. 2010;48(1):34–40. Epub 2009/11/04. doi: 10.1128/JCM.01433-09 ; PubMed Central PMCID: PMCPMC2812269. PubMed DOI PMC

Raeside C, Gaffé J, Deatherage DE, Tenaillon O, Briska AM, Ptashkin RN, et al. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. MBio. 2014;5(5):e01377–14. Epub 2014/09/09. doi: 10.1128/mBio.01377-14 ; PubMed Central PMCID: PMCPMC4173774. PubMed DOI PMC

Lee H, Doak TG, Popodi E, Foster PL, Tang H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 2016;44(15):7109–19. Epub 2016/07/18. doi: 10.1093/nar/gkw647 ; PubMed Central PMCID: PMCPMC5009759. PubMed DOI PMC

Cooper VS, Schneider D, Blot M, Lenski RE. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol. 2001;183(9):2834–41. doi: 10.1128/JB.183.9.2834-2841.2001 ; PubMed Central PMCID: PMCPMC99500. PubMed DOI PMC

Merhej V, Georgiades K, Raoult D. Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics. 2013;12(4):291–304. Epub 2013/06/29. doi: 10.1093/bfgp/elt015 . PubMed DOI

Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24(5):327–37. Epub 2016/03/03. doi: 10.1016/j.tim.2016.01.008 ; PubMed Central PMCID: PMCPMC4854172. PubMed DOI PMC

Painter RG, Valentine VG, Lanson NA, Leidal K, Zhang Q, Lombard G, et al. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry. 2006;45(34):10260–9. doi: 10.1021/bi060490t ; PubMed Central PMCID: PMCPMC2931333. PubMed DOI PMC

Van Der Vliet A, Nguyen MN, Shigenaga MK, Eiserich JP, Marelich GP, Cross CE. Myeloperoxidase and protein oxidation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L537–46. . PubMed

Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA, McEwan AG, et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep. 2013;33(4). Epub 2013/07/16. doi: 10.1042/BSR20130014 ; PubMed Central PMCID: PMCPMC3712485. PubMed DOI PMC

Djoko KY, Ong CL, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem. 2015;290(31):18954–61. Epub 2015/06/08. doi: 10.1074/jbc.R115.647099 ; PubMed Central PMCID: PMCPMC4521016. PubMed DOI PMC

Besold AN, Culbertson EM, Culotta VC. The Yin and Yang of copper during infection. J Biol Inorg Chem. 2016;21(2):137–44. Epub 2016/01/20. doi: 10.1007/s00775-016-1335-1 . PubMed DOI PMC

Kalferstova L, Kolar M, Fila L, Vavrova J, Drevinek P. Gene expression profiling of Burkholderia cenocepacia at the time of cepacia syndrome: loss of motility as a marker of poor prognosis? J Clin Microbiol. 2015;53(5):1515–22. doi: 10.1128/JCM.03605-14 ; PubMed Central PMCID: PMCPMC4400763. PubMed DOI PMC

Valvano MA. Intracellular survival of Burkholderia cepacia complex in phagocytic cells. Can J Microbiol. 2015;61(9):607–15. Epub 2015/06/30. doi: 10.1139/cjm-2015-0316 . PubMed DOI

Mesureur J, Feliciano JR, Wagner N, Gomes MC, Zhang L, Blanco-Gonzalez M, et al. Macrophages, but not neutrophils, are critical for proliferation of Burkholderia cenocepacia and ensuing host-damaging inflammation. PLoS Pathog. 2017;13(6):e1006437 Epub 2017/06/26. doi: 10.1371/journal.ppat.1006437 . PubMed DOI PMC

Bruscia EM, Bonfield TL. Cystic fibrosis lung immunity: The role of the macrophage. J Innate Immun. 2016;8(6):550–63. Epub 2016/06/24. doi: 10.1159/000446825 ; PubMed Central PMCID: PMCPMC5089923. PubMed DOI PMC

Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol. 2004;52(5):1291–302. doi: 10.1111/j.1365-2958.2004.04078.x . PubMed DOI

Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, et al. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2011;108(4):1621–6. Epub 2011/01/04. doi: 10.1073/pnas.1009261108 ; PubMed Central PMCID: PMCPMC3029754. PubMed DOI PMC

Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One. 2014;9(8):e104984 Epub 2014/08/11. doi: 10.1371/journal.pone.0104984 ; PubMed Central PMCID: PMCPMC4128722. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490 Epub 2010/03/10. doi: 10.1371/journal.pone.0009490 ; PubMed Central PMCID: PMCPMC2835736. PubMed DOI PMC

Siguier P, Varani A, Perochon J, Chandler M. Exploring bacterial insertion sequences with ISfinder: objectives, uses, and future developments. Methods Mol Biol. 2012;859:91–103. doi: 10.1007/978-1-61779-603-6_5 . PubMed DOI

Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FS. The Burkholderia Genome Database: facilitating flexible queries and comparative analyses. Bioinformatics. 2008;24(23):2803–4. doi: 10.1093/bioinformatics/btn524 ; PubMed Central PMCID: PMCPMC2639269. PubMed DOI PMC

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147 Epub 2010/06/25. doi: 10.1371/journal.pone.0011147 ; PubMed Central PMCID: PMCPMC2892488. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 . PubMed DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 ; PubMed Central PMCID: PMCPMC3371832. PubMed DOI PMC

Kearse M. The Geneious 6.0.3 Read Mapper [cited 2017 cited 2017 Nov 2]. Available from: http://assets.geneious.com/documentation/geneious/GeneiousReadMapper.pdf.

Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402 Epub 2011/08/08. doi: 10.1186/1471-2164-12-402 ; PubMed Central PMCID: PMCPMC3163573. PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...