Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line

. 2019 Sep 24 ; 9 (1) : 13728. [epub] 20190924

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31551434

Grantová podpora
SFB 787 - Project C2 Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB 787 - Project C2 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 31551434
PubMed Central PMC6760210
DOI 10.1038/s41598-019-50062-x
PII: 10.1038/s41598-019-50062-x
Knihovny.cz E-zdroje

Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, "slow light" and "fast light" behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.

Zobrazit více v PubMed

Kimble HJ. The quantum internet. Nat. 2008;453:1023–1030. doi: 10.1038/nature07127. PubMed DOI

DiVincenzo DP, Loss D. Quantum information is physical. Superlattices Microstruct. 1998;23:419–432. doi: 10.1006/spmi.1997.0520. DOI

Bennett CH, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 1993;70:1895–1899. doi: 10.1103/PhysRevLett.70.1895. PubMed DOI

Reindl M, et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 2018;4:eaau1255. doi: 10.1126/sciadv.aau1255. PubMed DOI PMC

Ekert AK. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI

Briegel H-J, Dür W, Cirac JI, Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998;81:5932–5935. doi: 10.1103/PhysRevLett.81.5932. DOI

Simon C, et al. Quantum memories. The Eur. Phys. J. D. 2010;58:1–22. doi: 10.1140/epjd/e2010-00103-y. DOI

Fuchs GD, Burkard G, Klimov PV, Awschalom DD. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 2011;7:789–793. doi: 10.1038/nphys2026. DOI

Sukachev D, et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 2017;119:223602. doi: 10.1103/PhysRevLett.119.223602. PubMed DOI

England DG, et al. Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory. Phys. Rev. Lett. 2015;114:053602. doi: 10.1103/PhysRevLett.114.053602. PubMed DOI

Saglamyurek E, et al. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun. 2016;7:11202. doi: 10.1038/ncomms11202. PubMed DOI PMC

Zhong T, et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Sci. 2017;357:1392–1395. doi: 10.1126/science.aan5959. PubMed DOI

Tanabe T, Notomi M, Kuramochi E, Shinya A, Taniyama H. Trapping and delaying photons for one nanosecond in an ultrasmall high- q photonic-crystal nanocavity. Nat. Photonics. 2007;1:49. doi: 10.1038/nphoton.2006.51. DOI

Baba T. Slow light in photonic crystals. Nat. Photonics. 2008;2:465–473. doi: 10.1038/nphoton.2008.146. DOI

Hu C, Schulz SA, Liles AA, O’Faolain L. Tunable optical buffer through an analogue to electromagnetically induced transparency in coupled photonic crystal cavities. ACS Photonics. 2018;5:1827–1832. doi: 10.1021/acsphotonics.7b01590. DOI

England DG, et al. High-fidelity polarization storage in a gigahertz bandwidth quantum memory. J. Phys. B: At. Mol. Opt. Phys. 2012;45:124008. doi: 10.1088/0953-4075/45/12/124008. DOI

Michelberger PS, et al. Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory. New J. Phys. 2015;17:043006. doi: 10.1088/1367-2630/17/4/043006. DOI

Rakher MT, Warburton RJ, Treutlein P. Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble. Phys. Rev. A. 2013;88:053834. doi: 10.1103/PhysRevA.88.053834. DOI

Wolters J, et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 2017;119:060502. doi: 10.1103/PhysRevLett.119.060502. PubMed DOI

Benson O, Santori C, Pelton M, Yamamoto Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 2000;84:2513. doi: 10.1103/PhysRevLett.84.2513. PubMed DOI

Schlehahn A, et al. A stand-alone fiber-coupled single-photon source. Sci. Reports. 2018;8:1340. doi: 10.1038/s41598-017-19049-4. PubMed DOI PMC

Wang H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 2019;122:113602. doi: 10.1103/PhysRevLett.122.113602. PubMed DOI

Liu J, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 2019;14:586. doi: 10.1038/s41565-019-0435-9. PubMed DOI PMC

Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011;83:33–80. doi: 10.1103/RevModPhys.83.33. DOI

Ding X, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016;116:020401. doi: 10.1103/PhysRevLett.116.020401. PubMed DOI

Somaschi N, et al. Near-optimal single-photon sources in the solid state. Nat. Photonics. 2016;10:340–345. doi: 10.1038/nphoton.2016.23. DOI

Schlehahn A, et al. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics. 2016;1:011301. doi: 10.1063/1.4939831. DOI

Akopian N, et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 2006;96:130501. doi: 10.1103/PhysRevLett.96.130501. PubMed DOI

Trotta R, Wildmann JS, Zallo E, Schmidt OG, Rastelli A. Highly entangled photons from hybrid piezoelectricsemiconductor quantum dot devices. Nano Lett. 2014;14:3439–3444. doi: 10.1021/nl500968k. PubMed DOI

Müller M, Bounouar S, Jöns KD, Glässl M, Michler P. On-demand generation of indistinguishable polarizationentangled photon pairs. Nat. Photonics. 2014;8:224–228. doi: 10.1038/nphoton.2013.377. DOI

Zhang J, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 2015;6:10067. doi: 10.1038/ncomms10067. PubMed DOI PMC

Chen Y, et al. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots. Nat. Commun. 2016;7:ncomms10387. doi: 10.1038/ncomms10387. PubMed DOI PMC

Huber D, et al. Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 2018;121:033902. doi: 10.1103/PhysRevLett.121.033902. PubMed DOI

Buckley S, Rivoire K, Vuckovic J. Engineered quantum dot single-photon sources. Reports on Prog. Phys. 2012;75:126503. doi: 10.1088/0034-4885/75/12/126503. PubMed DOI

Ding F, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectricinduced biaxial stress. Phys. Rev. Lett. 2010;104:067405. doi: 10.1103/PhysRevLett.104.067405. PubMed DOI

Rastelli A, et al. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Phys. Status Solidi B. 2012;249:687–696. doi: 10.1002/pssb.201100775. DOI

Yuan X, et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 2018;9:3058. doi: 10.1038/s41467-018-05499-5. PubMed DOI PMC

Akopian N, Wang L, Rastelli A, Schmidt OG, Zwiller V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photonics. 2011;5:230–233. doi: 10.1038/nphoton.2011.16. DOI

Ulrich SM, et al. Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In,Ga)As/GaAs quantum dot. Phys. Rev. B. 2014;90:125310. doi: 10.1103/PhysRevB.90.125310. DOI

Jahn J-P, et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B. 2015;92:245439. doi: 10.1103/PhysRevB.92.245439. DOI

Wildmann JS, et al. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots. Phys. Rev. B. 2015;92:235306. doi: 10.1103/PhysRevB.92.235306. DOI

Portalupi SL, et al. Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nat. Commun. 2016;7:13632. doi: 10.1038/ncomms13632. PubMed DOI PMC

Huang H, et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms. ACS Photonics. 2017;4:868–872. doi: 10.1021/acsphotonics.6b00935. PubMed DOI PMC

Widmann M, Portalupi SL, Michler P, Wrachtrup J, Gerhardt I. Faraday filtering on the cs-d1-line for quantum hybrid systems. IEEE Photonics Technol. Lett. 2018;30:2083–2086. doi: 10.1109/LPT.2018.2871770. DOI

Vural H, et al. Two-photon interference in an atom-quantum dot hybrid system. Opt. 2018;5:367–373. doi: 10.1364/OPTICA.5.000367. DOI

Trotta R, et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016;7:10375. doi: 10.1038/ncomms10375. PubMed DOI PMC

Höckel D, Benson O. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Phys. Rev. Lett. 2010;105:153605. doi: 10.1103/PhysRevLett.105.153605. PubMed DOI

Sterne TE. Multi-lamellar cylindrical magnetic shields. Rev. Sci. Instr. 1935;6:324–326. doi: 10.1063/1.1751884. DOI

Kuhlmann AV, et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instruments. 2013;84:073905. doi: 10.1063/1.4813879. PubMed DOI

Zwiller V, et al. Single quantum dots emit single photons at a time: Antibunching experiments. Appl. Phys. Lett. 2001;78:2476. doi: 10.1063/1.1366367. DOI

Moreau E, et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 2001;87:183601. doi: 10.1103/PhysRevLett.87.183601. DOI

Yuan Z, et al. Electrically driven single-photon source. Sci. 2002;295:102. doi: 10.1126/science.1066790. PubMed DOI

Kantner M, Mittnenzweig M, Koprucki T. Hybrid quantum-classical modeling of quantum dot devices. Phys. Rev. B. 2017;96:205301. doi: 10.1103/PhysRevB.96.205301. DOI

Zentile MA, et al. ElecSus: A program to calculate the electric susceptibility of an atomic ensemble. Comput. Phys. Commun. 2015;189:162–174. doi: 10.1016/j.cpc.2014.11.023. DOI

Keaveney, J. ElecSus: A python program to calculate the weak-probe electric susceptibility of an atomic ensemble, https://github.com/jameskeaveney/ElecSus (2015).

Liu X, et al. Optical control of spectral diffusion with single InAs quantum dots in a silver-embedded nanocone. Opt. Express. 2017;25:8073–8084. doi: 10.1364/OE.25.008073. PubMed DOI

Dogariu A, Kuzmich A, Wang LJ. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A. 2001;63:053806. doi: 10.1103/PhysRevA.63.053806. DOI

Stenner MD, Gauthier DJ, Neifeld MA. The speed of information in a ‘fast-light’ optical medium. Nat. 2003;425:695–698. doi: 10.1038/nature02016. PubMed DOI

Milonni P. Fast Light, Slow Light and Left-Handed Light. 2004.

Zhang S, et al. Optical precursor of a single photon. Phys. Rev. Lett. 2011;106:243602. doi: 10.1103/PhysRevLett.106.243602. PubMed DOI

Lou JW, Cranch GA. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas. AIP Adv. 2018;8:025305. doi: 10.1063/1.5010294. DOI

Ahlrichs A, Berkemeier C, Sprenger B, Benson O. A monolithic polarization-independent frequency-filter system for filtering of photon pairs. Appl. Phys. Lett. 2013;103:241110. doi: 10.1063/1.4846316. DOI

Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric downconversion utilizing the cluster effect. Appl. Phys. Lett. 2016;108:021111. doi: 10.1063/1.4939925. DOI

Nunn J, et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 2013;110:133601. doi: 10.1103/PhysRevLett.110.133601. PubMed DOI

De Greve K, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nat. 2012;491:421–425. doi: 10.1038/nature11577. PubMed DOI

Walls DF. Evidence for the quantum nature of light. Nat. 1979;280:451–454. doi: 10.1038/280451a0. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...