Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SFB 787 - Project C2
Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB 787 - Project C2
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
31551434
PubMed Central
PMC6760210
DOI
10.1038/s41598-019-50062-x
PII: 10.1038/s41598-019-50062-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, "slow light" and "fast light" behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
CEITEC Brno University of Technology 621 00 Brno Czech Republic
Department of Physics Humboldt Universität zu Berlin 12489 Berlin Germany
Department of Physics Sapienza University of Rome 00185 Rome Italy
Department of Physics University of Basel 4056 Basel Switzerland
Institute for Integrative Nanosciences Leibniz IFW Dresden 01069 Dresden Germany
Institute of Solid State Physics Technische Universität Berlin 10623 Berlin Germany
Paul Drude Institut für Festkörperelektronik 10117 Berlin Germany
Zobrazit více v PubMed
Kimble HJ. The quantum internet. Nat. 2008;453:1023–1030. doi: 10.1038/nature07127. PubMed DOI
DiVincenzo DP, Loss D. Quantum information is physical. Superlattices Microstruct. 1998;23:419–432. doi: 10.1006/spmi.1997.0520. DOI
Bennett CH, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 1993;70:1895–1899. doi: 10.1103/PhysRevLett.70.1895. PubMed DOI
Reindl M, et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 2018;4:eaau1255. doi: 10.1126/sciadv.aau1255. PubMed DOI PMC
Ekert AK. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI
Briegel H-J, Dür W, Cirac JI, Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998;81:5932–5935. doi: 10.1103/PhysRevLett.81.5932. DOI
Simon C, et al. Quantum memories. The Eur. Phys. J. D. 2010;58:1–22. doi: 10.1140/epjd/e2010-00103-y. DOI
Fuchs GD, Burkard G, Klimov PV, Awschalom DD. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 2011;7:789–793. doi: 10.1038/nphys2026. DOI
Sukachev D, et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 2017;119:223602. doi: 10.1103/PhysRevLett.119.223602. PubMed DOI
England DG, et al. Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory. Phys. Rev. Lett. 2015;114:053602. doi: 10.1103/PhysRevLett.114.053602. PubMed DOI
Saglamyurek E, et al. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun. 2016;7:11202. doi: 10.1038/ncomms11202. PubMed DOI PMC
Zhong T, et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Sci. 2017;357:1392–1395. doi: 10.1126/science.aan5959. PubMed DOI
Tanabe T, Notomi M, Kuramochi E, Shinya A, Taniyama H. Trapping and delaying photons for one nanosecond in an ultrasmall high- q photonic-crystal nanocavity. Nat. Photonics. 2007;1:49. doi: 10.1038/nphoton.2006.51. DOI
Baba T. Slow light in photonic crystals. Nat. Photonics. 2008;2:465–473. doi: 10.1038/nphoton.2008.146. DOI
Hu C, Schulz SA, Liles AA, O’Faolain L. Tunable optical buffer through an analogue to electromagnetically induced transparency in coupled photonic crystal cavities. ACS Photonics. 2018;5:1827–1832. doi: 10.1021/acsphotonics.7b01590. DOI
England DG, et al. High-fidelity polarization storage in a gigahertz bandwidth quantum memory. J. Phys. B: At. Mol. Opt. Phys. 2012;45:124008. doi: 10.1088/0953-4075/45/12/124008. DOI
Michelberger PS, et al. Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory. New J. Phys. 2015;17:043006. doi: 10.1088/1367-2630/17/4/043006. DOI
Rakher MT, Warburton RJ, Treutlein P. Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble. Phys. Rev. A. 2013;88:053834. doi: 10.1103/PhysRevA.88.053834. DOI
Wolters J, et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 2017;119:060502. doi: 10.1103/PhysRevLett.119.060502. PubMed DOI
Benson O, Santori C, Pelton M, Yamamoto Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 2000;84:2513. doi: 10.1103/PhysRevLett.84.2513. PubMed DOI
Schlehahn A, et al. A stand-alone fiber-coupled single-photon source. Sci. Reports. 2018;8:1340. doi: 10.1038/s41598-017-19049-4. PubMed DOI PMC
Wang H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 2019;122:113602. doi: 10.1103/PhysRevLett.122.113602. PubMed DOI
Liu J, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 2019;14:586. doi: 10.1038/s41565-019-0435-9. PubMed DOI PMC
Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011;83:33–80. doi: 10.1103/RevModPhys.83.33. DOI
Ding X, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016;116:020401. doi: 10.1103/PhysRevLett.116.020401. PubMed DOI
Somaschi N, et al. Near-optimal single-photon sources in the solid state. Nat. Photonics. 2016;10:340–345. doi: 10.1038/nphoton.2016.23. DOI
Schlehahn A, et al. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics. 2016;1:011301. doi: 10.1063/1.4939831. DOI
Akopian N, et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 2006;96:130501. doi: 10.1103/PhysRevLett.96.130501. PubMed DOI
Trotta R, Wildmann JS, Zallo E, Schmidt OG, Rastelli A. Highly entangled photons from hybrid piezoelectricsemiconductor quantum dot devices. Nano Lett. 2014;14:3439–3444. doi: 10.1021/nl500968k. PubMed DOI
Müller M, Bounouar S, Jöns KD, Glässl M, Michler P. On-demand generation of indistinguishable polarizationentangled photon pairs. Nat. Photonics. 2014;8:224–228. doi: 10.1038/nphoton.2013.377. DOI
Zhang J, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 2015;6:10067. doi: 10.1038/ncomms10067. PubMed DOI PMC
Chen Y, et al. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots. Nat. Commun. 2016;7:ncomms10387. doi: 10.1038/ncomms10387. PubMed DOI PMC
Huber D, et al. Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 2018;121:033902. doi: 10.1103/PhysRevLett.121.033902. PubMed DOI
Buckley S, Rivoire K, Vuckovic J. Engineered quantum dot single-photon sources. Reports on Prog. Phys. 2012;75:126503. doi: 10.1088/0034-4885/75/12/126503. PubMed DOI
Ding F, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectricinduced biaxial stress. Phys. Rev. Lett. 2010;104:067405. doi: 10.1103/PhysRevLett.104.067405. PubMed DOI
Rastelli A, et al. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Phys. Status Solidi B. 2012;249:687–696. doi: 10.1002/pssb.201100775. DOI
Yuan X, et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 2018;9:3058. doi: 10.1038/s41467-018-05499-5. PubMed DOI PMC
Akopian N, Wang L, Rastelli A, Schmidt OG, Zwiller V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photonics. 2011;5:230–233. doi: 10.1038/nphoton.2011.16. DOI
Ulrich SM, et al. Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In,Ga)As/GaAs quantum dot. Phys. Rev. B. 2014;90:125310. doi: 10.1103/PhysRevB.90.125310. DOI
Jahn J-P, et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B. 2015;92:245439. doi: 10.1103/PhysRevB.92.245439. DOI
Wildmann JS, et al. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots. Phys. Rev. B. 2015;92:235306. doi: 10.1103/PhysRevB.92.235306. DOI
Portalupi SL, et al. Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nat. Commun. 2016;7:13632. doi: 10.1038/ncomms13632. PubMed DOI PMC
Huang H, et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms. ACS Photonics. 2017;4:868–872. doi: 10.1021/acsphotonics.6b00935. PubMed DOI PMC
Widmann M, Portalupi SL, Michler P, Wrachtrup J, Gerhardt I. Faraday filtering on the cs-d1-line for quantum hybrid systems. IEEE Photonics Technol. Lett. 2018;30:2083–2086. doi: 10.1109/LPT.2018.2871770. DOI
Vural H, et al. Two-photon interference in an atom-quantum dot hybrid system. Opt. 2018;5:367–373. doi: 10.1364/OPTICA.5.000367. DOI
Trotta R, et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016;7:10375. doi: 10.1038/ncomms10375. PubMed DOI PMC
Höckel D, Benson O. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Phys. Rev. Lett. 2010;105:153605. doi: 10.1103/PhysRevLett.105.153605. PubMed DOI
Sterne TE. Multi-lamellar cylindrical magnetic shields. Rev. Sci. Instr. 1935;6:324–326. doi: 10.1063/1.1751884. DOI
Kuhlmann AV, et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instruments. 2013;84:073905. doi: 10.1063/1.4813879. PubMed DOI
Zwiller V, et al. Single quantum dots emit single photons at a time: Antibunching experiments. Appl. Phys. Lett. 2001;78:2476. doi: 10.1063/1.1366367. DOI
Moreau E, et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 2001;87:183601. doi: 10.1103/PhysRevLett.87.183601. DOI
Yuan Z, et al. Electrically driven single-photon source. Sci. 2002;295:102. doi: 10.1126/science.1066790. PubMed DOI
Kantner M, Mittnenzweig M, Koprucki T. Hybrid quantum-classical modeling of quantum dot devices. Phys. Rev. B. 2017;96:205301. doi: 10.1103/PhysRevB.96.205301. DOI
Zentile MA, et al. ElecSus: A program to calculate the electric susceptibility of an atomic ensemble. Comput. Phys. Commun. 2015;189:162–174. doi: 10.1016/j.cpc.2014.11.023. DOI
Keaveney, J. ElecSus: A python program to calculate the weak-probe electric susceptibility of an atomic ensemble, https://github.com/jameskeaveney/ElecSus (2015).
Liu X, et al. Optical control of spectral diffusion with single InAs quantum dots in a silver-embedded nanocone. Opt. Express. 2017;25:8073–8084. doi: 10.1364/OE.25.008073. PubMed DOI
Dogariu A, Kuzmich A, Wang LJ. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A. 2001;63:053806. doi: 10.1103/PhysRevA.63.053806. DOI
Stenner MD, Gauthier DJ, Neifeld MA. The speed of information in a ‘fast-light’ optical medium. Nat. 2003;425:695–698. doi: 10.1038/nature02016. PubMed DOI
Milonni P. Fast Light, Slow Light and Left-Handed Light. 2004.
Zhang S, et al. Optical precursor of a single photon. Phys. Rev. Lett. 2011;106:243602. doi: 10.1103/PhysRevLett.106.243602. PubMed DOI
Lou JW, Cranch GA. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas. AIP Adv. 2018;8:025305. doi: 10.1063/1.5010294. DOI
Ahlrichs A, Berkemeier C, Sprenger B, Benson O. A monolithic polarization-independent frequency-filter system for filtering of photon pairs. Appl. Phys. Lett. 2013;103:241110. doi: 10.1063/1.4846316. DOI
Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric downconversion utilizing the cluster effect. Appl. Phys. Lett. 2016;108:021111. doi: 10.1063/1.4939925. DOI
Nunn J, et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 2013;110:133601. doi: 10.1103/PhysRevLett.110.133601. PubMed DOI
De Greve K, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nat. 2012;491:421–425. doi: 10.1038/nature11577. PubMed DOI
Walls DF. Evidence for the quantum nature of light. Nat. 1979;280:451–454. doi: 10.1038/280451a0. DOI