Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
201306090010
China Scholarship Council (CSC) - International
679183
EC | European Research Council (ERC) - International
P 29603
Austrian Science Fund (FWF Der Wissenschaftsfonds) - International
PubMed
30076301
PubMed Central
PMC6076237
DOI
10.1038/s41467-018-05499-5
PII: 10.1038/s41467-018-05499-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
Departamento de Física Universidad de Oviedo 33007 Oviedo Spain
Department of Physics Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
Forschungszentrum Mikrotechnik FH Vorarlberg Hochschulstraße 1 6850 Dornbirn Austria
Institut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg Germany
Institute for Integrative Nanosciences IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
Zobrazit více v PubMed
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat. Photonics. 2016;10:631–641. doi: 10.1038/nphoton.2016.186. DOI
Orieux A, Versteegh MAM, Jöns KD, Ducci S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 2017;80:076001. doi: 10.1088/1361-6633/aa6955. PubMed DOI
Michler, P. Quantum Dots for Quantum Information Technologies (Springer International Publishing, Cham, 2017).
Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015;87:347–400. doi: 10.1103/RevModPhys.87.347. DOI
Warburton RJ. Single spins in self-assembled quantum dots. Nat. Mater. 2013;12:483–493. doi: 10.1038/nmat3585. PubMed DOI
Claudon J, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics. 2010;4:174–177. doi: 10.1038/nphoton.2009.287x. DOI
Somaschi N, et al. Near-optimal single-photon sources in the solid state. Nat. Photonics. 2016;10:340–345. doi: 10.1038/nphoton.2016.23. DOI
Shields AJ. Semiconductor quantum light sources. Nat. Photonics. 2007;1:215–223. doi: 10.1038/nphoton.2007.46. DOI
Gschrey M, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 2015;6:7662. doi: 10.1038/ncomms8662. PubMed DOI PMC
Ding X, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016;116:20401. doi: 10.1103/PhysRevLett.116.020401. PubMed DOI
Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature. 2002;419:594–597. doi: 10.1038/nature01086. PubMed DOI
Dietrich CP, Fiore A, Thompson MG, Kamp M, Höfling S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev. 2016;10:870–894. doi: 10.1002/lpor.201500321. DOI
Rengstl U, et al. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Appl. Phys. Lett. 2015;107:21101. doi: 10.1063/1.4926729. DOI
Makhonin MN, et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 2014;14:6997–7002. doi: 10.1021/nl5032937. PubMed DOI
Wu X, et al. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot. Nano Lett. 2017;17:4291–4296. doi: 10.1021/acs.nanolett.7b01284. PubMed DOI
Kim JH, Richardson CJK, Leavitt RP, Waks E. Two-photon interference from the far-field emission of chip-integrated cavity-coupled emitters. Nano Lett. 2016;16:7061–7066. doi: 10.1021/acs.nanolett.6b03295. PubMed DOI
Keil R, et al. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase. APL Photonics. 2016;1:81302. doi: 10.1063/1.4960204. DOI
Reithmaier G, et al. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 2013;3:1901. doi: 10.1038/srep01901. PubMed DOI PMC
Seidl S, et al. Statistics of quantum dot exciton fine structure splittings and their polarization orientations. Phys. E. Nanostructures. 2008;40:2153–2155.
Huo YH, Rastelli A, Schmidt OG. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 2013;102:152105. doi: 10.1063/1.4802088. DOI
Zadeh IE, et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 2016;16:2289–2294. doi: 10.1021/acs.nanolett.5b04709. PubMed DOI
Heyn C, et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 2009;94:183113. doi: 10.1063/1.3133338. DOI
Huo YH, et al. A light-hole exciton in a quantum dot. Nat. Phys. 2014;10:46–51. doi: 10.1038/nphys2799. DOI
Huber D, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 2017;8:15506. doi: 10.1038/ncomms15506. PubMed DOI PMC
Lin H, et al. Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities. Phys. Rev. B. 2011;84:201301. doi: 10.1103/PhysRevB.84.201301. DOI
Trotta, R. & Rastelli, A. in Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids (eds Predojević, A. & Mitchell, M. W.) 405 (Springer, Berlin, 2015).
Tonin C, et al. Polarization properties of excitonic qubits in single self-assembled quantum dots. Phys. Rev. B. 2012;85:155303. doi: 10.1103/PhysRevB.85.155303. DOI
Süess MJ, et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics. 2013;7:466–472. doi: 10.1038/nphoton.2013.67. DOI
Keplinger M, et al. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays. Nanotechnology. 2016;27:55705. doi: 10.1088/0957-4484/27/5/055705. PubMed DOI
Seidl S, et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 2006;88:0–3. doi: 10.1063/1.2204843. DOI
Wagesreither S, Bertagnolli E, Kawase S, Isono Y, Lugstein A. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires. Nanotechnology. 2014;25:455705. doi: 10.1088/0957-4484/25/45/455705. PubMed DOI
Signorello G, Karg S, Björk MT, Gotsmann B, Riel H. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 2013;13:917–924. doi: 10.1021/nl303694c. PubMed DOI
Wu W, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514:470–474. doi: 10.1038/nature13792. PubMed DOI
Su D, et al. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress. AIP Adv. 2016;6:45204. doi: 10.1063/1.4946850. DOI
Gammon D, Snow E, Shanabrook B, Katzer D, Park D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 1996;76:3005–3008. doi: 10.1103/PhysRevLett.76.3005. PubMed DOI
Bester G, Nair S, Zunger A. Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1-xGaxAs/GaAs quantum dots. Phys. Rev. B. 2003;67:161306(R). doi: 10.1103/PhysRevB.67.161306. DOI
Plumhof JD, et al. Experimental investigation and modeling of the fine structure splitting of neutral excitons in strain-free GaAs/AlxGa1-xAs quantum dots. Phys. Rev. B. 2010;81:121309(R). doi: 10.1103/PhysRevB.81.121309. DOI
Besombes L, Kheng K, Martrou D. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys. Rev. Lett. 2000;85:425–428. doi: 10.1103/PhysRevLett.85.425. PubMed DOI
Luo JW, Bester G, Zunger A. Supercoupling between heavy-hole and light-hole states in nanostructures. Phys. Rev. B. 2015;92:165301. doi: 10.1103/PhysRevB.92.165301. DOI
Huo YH, Křápek V, Schmidt OG, Rastelli A. Spontaneous brightening of dark excitons in GaAs/AlGaAs quantum dots near a cleaved facet. Phys. Rev. B. 2017;95:165304. doi: 10.1103/PhysRevB.95.165304. DOI
Bennett AJ, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 2010;6:947–950. doi: 10.1038/nphys1780. DOI
Li LH, et al. Control of polarization and dipole moment in low-dimensional semiconductor nanostructures. Appl. Phys. Lett. 2009;95:221116. doi: 10.1063/1.3269592. DOI
Reindl M, et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 2017;17:4090–4095. doi: 10.1021/acs.nanolett.7b00777. PubMed DOI PMC
Schweickert L, et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 2018;112:93106. doi: 10.1063/1.5020038. DOI
Flagg EB, Polyakov SV, Thomay T, Solomon GS. Dynamics of nonclassical light from a single solid-state quantum emitter. Phys. Rev. Lett. 2012;109:163601. doi: 10.1103/PhysRevLett.109.163601. PubMed DOI
Stepanov P, et al. Large and uniform optical emission shifts in quantum dots strained along their growth axis. Nano Lett. 2016;16:3215–3220. doi: 10.1021/acs.nanolett.6b00678. PubMed DOI
Keil R, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 2017;8:15501. doi: 10.1038/ncomms15501. PubMed DOI PMC
Kaganskiy A, et al. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing. Rev. Sci. Instrum. 2015;86:73903. doi: 10.1063/1.4926995. PubMed DOI
Liu J, et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 2017;88:23116. doi: 10.1063/1.4976578. PubMed DOI PMC
Williamson AJ, Wang LW, Zunger A. Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B. 2000;62:12963–12977. doi: 10.1103/PhysRevB.62.12963. DOI
Wang LW, Zunger A. Linear combination of bulk bands method for large-scale electronic structure calculations on strained nanostructures. Phys. Rev. B. 1999;59:15806–15818. doi: 10.1103/PhysRevB.59.15806. DOI
Franceschetti A, Fu H, Wang LW, Zunger A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B. 1999;60:1819–1829. doi: 10.1103/PhysRevB.60.1819. DOI
Bester G. Electronic excitations in nanostructures: an empirical pseudopotential based approach. J. Phys. Condens. Matter. 2009;21:23202. doi: 10.1088/0953-8984/21/2/023202. PubMed DOI
Chuang, S. L. Physics of Photonic Devices (John Wiley & Sons, Hoboken, 2009).
Martín-Sánchez J, et al. Reversible control of in-plane elastic stress tensor in nanomembranes. Adv. Opt. Mater. 2016;4:682–687. doi: 10.1002/adom.201500779. DOI
Trotta R, et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016;7:10375. doi: 10.1038/ncomms10375. PubMed DOI PMC