• This record comes from PubMed

Characterization of Eight Novel Spiroleptosphols from Fusarium avenaceum

. 2019 Sep 26 ; 24 (19) : . [epub] 20190926

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NNF15OC0016186 Novo Nordisk Fonden
N/A Det Obelske Familiefond
N/A Carlsbergfondet
N/A Spar Nord Fonden

Links

PubMed 31561557
PubMed Central PMC6804164
DOI 10.3390/molecules24193498
PII: molecules24193498
Knihovny.cz E-resources

Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.

See more in PubMed

Hansen F.T., Gardiner D.M., Lysøe E., Fuertes P.R., Tudzynski B., Wiemann P., Sondergaard T.E., Giese H., Brodersen D.E., Sørensen J.L. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet. Biol. 2015;75:20–29. doi: 10.1016/j.fgb.2014.12.004. PubMed DOI

Brown D.W., Proctor R.H. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet. Biol. 2016;89:37–51. doi: 10.1016/j.fgb.2016.01.008. PubMed DOI

Sørensen J.L., Akk E., Thrane U., Giese H., Sondergaard T.E. Production of fusarielins by Fusarium. Int. J. Food Microbiol. 2013;160:206–211. doi: 10.1016/j.ijfoodmicro.2012.10.016. PubMed DOI

Sondergaard T.E., Klitgaard L.G., Purup S., Kobayashi H., Giese H., Sørensen J.L. Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol. Lett. 2012;214:259–262. doi: 10.1016/j.toxlet.2012.09.004. PubMed DOI

Sondergaard T.E., Fredborg M., Oppenhagen Christensen A.M., Damsgaard S.K., Kramer N.F., Giese H., Sørensen J.L. Fast screening of antibacterial compounds from Fusaria. Toxins (Basel) 2016;8:355. doi: 10.3390/toxins8120355. PubMed DOI PMC

Westphal K.R., Muurmann A.T., Paulsen I.E., Nørgaard K.T.H., Overgaard M.L., Dall S.M., Aalborg T., Wimmer R., Sørensen J.L., Sondergaard T.E. Who needs neighbors? PKS8 is a stand-alone gene in Fusarium graminearum responsible for production of gibepyrones and prolipyrone B. Molecules. 2018;23:2232. doi: 10.3390/molecules23092232. PubMed DOI PMC

Bogner C.W., Kamdem R.S.T., Sichtermann G., Matthäus C., Hölscher D., Popp J., Proksch P., Grundler F.M.W., Schouten A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017;10:175–188. doi: 10.1111/1751-7915.12467. PubMed DOI PMC

Brakhage A.A., Schroeckh V. Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011;48:15–22. doi: 10.1016/j.fgb.2010.04.004. PubMed DOI

Bode H.B., Bethe B., Hofs R., Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem. 2002;3:619–627. doi: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9. PubMed DOI

Sørensen J.L., Sondergaard T.E. The effects of different yeast extracts on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2014;170:55–60. doi: 10.1016/j.ijfoodmicro.2013.10.024. PubMed DOI

Sørensen J.L., Nielsen K.F., Sondergaard T.E. Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet. Biol. 2012;49:613–618. doi: 10.1016/j.fgb.2012.06.004. PubMed DOI

Hashimoto M., Tsushima T., Murakami T., Nomiya M., Takada N., Tanaka K. Spiroleptosphol isolated from Leptosphaeria doliolum. Bioorg. Med. Chem. Lett. 2008;18:4228–4231. doi: 10.1016/j.bmcl.2008.05.087. PubMed DOI

Murakami T., Tsushima T., Takada N., Tanaka K., Nihei K., Miura T., Hashimoto M. Four analogues of spiroleptosphol isolated from Leptosphaeria doliolum. Bioorg. Med. Chem. 2009;17:492–495. doi: 10.1016/j.bmc.2008.12.004. PubMed DOI

Oh H., Swenson D.C., Gloer J.B., Shearer C.A. New bioactive rosigenin analogues and aromatic polyketide metabolites from the freshwater aquatic fungus Massarina tunicata. J. Nat. Prod. 2003;66:73–79. doi: 10.1021/np020342d. PubMed DOI

Albinati A., Brückner S., Camarda L., Nasini G. Rosigenin, an unusual metabolite from Mycosphaerella rosigena. Tetrahedron. 1980;36:117–121. doi: 10.1016/0040-4020(80)85033-2. DOI

Wijeratne E.M.K., Gunaherath G.M.K.B., Chapla V.M., Tillotson J., de la Cruz F., Kang M., U’Ren J.M., Araujo A.R., Arnold A.E., Chapman E., et al. Oxaspirol B with p97 inhibitory activity and other oxaspirols from Lecythophora sp. FL1375 and FL1031, endolichenic fungi inhabiting Parmotrema tinctorum and Cladonia evansii. J. Nat. Prod. 2016;79:340–352. doi: 10.1021/acs.jnatprod.5b00986. PubMed DOI PMC

Ayer W.A., Craw P.A., Neary J. Metabolites of the fungus Arthropsis truncata. Can. J. Chem. 1992;70:1338–1347. doi: 10.1139/v92-172. DOI

Rether J., Erkel G., Anke T., Sterner O. Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol. Chem. 2004;385:829–834. doi: 10.1515/BC.2004.108. PubMed DOI

Namikoshi M., Kobayashi H., Yoshimoto T., Meguro S., Akano K. Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem. Pharm. Bull. (Tokyo) 2000;48:1452–1457. doi: 10.1248/cpb.48.1452. PubMed DOI

Hussain H., Ahmed I., Schulz B., Draeger S., Florke U., Pescitelli G., Krohn K. Solid-state circular dichroism and hydrogen bonding: Absolute configuration of massarigenin A from Microsphaeropsis sp. Chirality. 2011;23:617–623. doi: 10.1002/chir.20985. PubMed DOI

Guiraud P., Steiman R., Seigle-Murandi F., Buarque De Gusmao N. Antimicrobial and antitumor activities of mycosporulone. J. Nat. Prod. 1999;62:1222–1224. doi: 10.1021/np9805084. PubMed DOI

Abdel-Wahab M.A., Asolkar R.N., Inderbitzin P., Fenical W. Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016. Phytochemistry. 2007;68:1212–1218. doi: 10.1016/j.phytochem.2007.01.020. PubMed DOI PMC

Fukami A., Taniguchi Y., Nakamura T., Rho M.C., Kawaguchi K., Hayashi M., Komiyama K., Omura S. New members of the macrosphelides from Microsphaeropsis sp. FO-5050 IV. J. Antibiot. (Tokyo) 1999;52:501–504. doi: 10.7164/antibiotics.52.501. PubMed DOI

Murakami T., Takada N., Hashimoto M. Biosynthetic studies of spiroleptosphol. Bioorg. Med. Chem. Lett. 2009;19:1122–1125. doi: 10.1016/j.bmcl.2008.12.099. PubMed DOI

Sørensen J.L., Giese H. Influence of carbohydrates on secondary metabolism in Fusarium avenaceum. Toxins (Basel) 2013;5:1655–1663. doi: 10.3390/toxins5091655. PubMed DOI PMC

Robien W. A Critical evaluation of the quality of published 13C NMR data in natural product chemistry. Prog. Chem. Org. Nat. Prod. 2017;105:137–215. doi: 10.1007/978-3-319-49712-9_3. PubMed DOI

Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI

Klamt A., Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkins Trans. 2. 1993;0:799–805. doi: 10.1039/P29930000799. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian09. Gaussian Inc.; Wallingford, CT, USA: 2009. Revision D01.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...