Characterization of Eight Novel Spiroleptosphols from Fusarium avenaceum
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NNF15OC0016186
Novo Nordisk Fonden
N/A
Det Obelske Familiefond
N/A
Carlsbergfondet
N/A
Spar Nord Fonden
PubMed
31561557
PubMed Central
PMC6804164
DOI
10.3390/molecules24193498
PII: molecules24193498
Knihovny.cz E-resources
- Keywords
- Fusarium avenaceum, PKS, polyketide synthases, polyketides, secondary metabolites, spiroleptosphol,
- MeSH
- Chemical Phenomena MeSH
- Fusarium chemistry metabolism MeSH
- Magnetic Resonance Spectroscopy MeSH
- Metabolic Networks and Pathways MeSH
- Molecular Structure MeSH
- Spiro Compounds chemistry metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- spirolephtoshol MeSH Browser
- Spiro Compounds MeSH
Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.
See more in PubMed
Hansen F.T., Gardiner D.M., Lysøe E., Fuertes P.R., Tudzynski B., Wiemann P., Sondergaard T.E., Giese H., Brodersen D.E., Sørensen J.L. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet. Biol. 2015;75:20–29. doi: 10.1016/j.fgb.2014.12.004. PubMed DOI
Brown D.W., Proctor R.H. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet. Biol. 2016;89:37–51. doi: 10.1016/j.fgb.2016.01.008. PubMed DOI
Sørensen J.L., Akk E., Thrane U., Giese H., Sondergaard T.E. Production of fusarielins by Fusarium. Int. J. Food Microbiol. 2013;160:206–211. doi: 10.1016/j.ijfoodmicro.2012.10.016. PubMed DOI
Sondergaard T.E., Klitgaard L.G., Purup S., Kobayashi H., Giese H., Sørensen J.L. Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol. Lett. 2012;214:259–262. doi: 10.1016/j.toxlet.2012.09.004. PubMed DOI
Sondergaard T.E., Fredborg M., Oppenhagen Christensen A.M., Damsgaard S.K., Kramer N.F., Giese H., Sørensen J.L. Fast screening of antibacterial compounds from Fusaria. Toxins (Basel) 2016;8:355. doi: 10.3390/toxins8120355. PubMed DOI PMC
Westphal K.R., Muurmann A.T., Paulsen I.E., Nørgaard K.T.H., Overgaard M.L., Dall S.M., Aalborg T., Wimmer R., Sørensen J.L., Sondergaard T.E. Who needs neighbors? PKS8 is a stand-alone gene in Fusarium graminearum responsible for production of gibepyrones and prolipyrone B. Molecules. 2018;23:2232. doi: 10.3390/molecules23092232. PubMed DOI PMC
Bogner C.W., Kamdem R.S.T., Sichtermann G., Matthäus C., Hölscher D., Popp J., Proksch P., Grundler F.M.W., Schouten A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017;10:175–188. doi: 10.1111/1751-7915.12467. PubMed DOI PMC
Brakhage A.A., Schroeckh V. Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011;48:15–22. doi: 10.1016/j.fgb.2010.04.004. PubMed DOI
Bode H.B., Bethe B., Hofs R., Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem. 2002;3:619–627. doi: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9. PubMed DOI
Sørensen J.L., Sondergaard T.E. The effects of different yeast extracts on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2014;170:55–60. doi: 10.1016/j.ijfoodmicro.2013.10.024. PubMed DOI
Sørensen J.L., Nielsen K.F., Sondergaard T.E. Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet. Biol. 2012;49:613–618. doi: 10.1016/j.fgb.2012.06.004. PubMed DOI
Hashimoto M., Tsushima T., Murakami T., Nomiya M., Takada N., Tanaka K. Spiroleptosphol isolated from Leptosphaeria doliolum. Bioorg. Med. Chem. Lett. 2008;18:4228–4231. doi: 10.1016/j.bmcl.2008.05.087. PubMed DOI
Murakami T., Tsushima T., Takada N., Tanaka K., Nihei K., Miura T., Hashimoto M. Four analogues of spiroleptosphol isolated from Leptosphaeria doliolum. Bioorg. Med. Chem. 2009;17:492–495. doi: 10.1016/j.bmc.2008.12.004. PubMed DOI
Oh H., Swenson D.C., Gloer J.B., Shearer C.A. New bioactive rosigenin analogues and aromatic polyketide metabolites from the freshwater aquatic fungus Massarina tunicata. J. Nat. Prod. 2003;66:73–79. doi: 10.1021/np020342d. PubMed DOI
Albinati A., Brückner S., Camarda L., Nasini G. Rosigenin, an unusual metabolite from Mycosphaerella rosigena. Tetrahedron. 1980;36:117–121. doi: 10.1016/0040-4020(80)85033-2. DOI
Wijeratne E.M.K., Gunaherath G.M.K.B., Chapla V.M., Tillotson J., de la Cruz F., Kang M., U’Ren J.M., Araujo A.R., Arnold A.E., Chapman E., et al. Oxaspirol B with p97 inhibitory activity and other oxaspirols from Lecythophora sp. FL1375 and FL1031, endolichenic fungi inhabiting Parmotrema tinctorum and Cladonia evansii. J. Nat. Prod. 2016;79:340–352. doi: 10.1021/acs.jnatprod.5b00986. PubMed DOI PMC
Ayer W.A., Craw P.A., Neary J. Metabolites of the fungus Arthropsis truncata. Can. J. Chem. 1992;70:1338–1347. doi: 10.1139/v92-172. DOI
Rether J., Erkel G., Anke T., Sterner O. Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol. Chem. 2004;385:829–834. doi: 10.1515/BC.2004.108. PubMed DOI
Namikoshi M., Kobayashi H., Yoshimoto T., Meguro S., Akano K. Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem. Pharm. Bull. (Tokyo) 2000;48:1452–1457. doi: 10.1248/cpb.48.1452. PubMed DOI
Hussain H., Ahmed I., Schulz B., Draeger S., Florke U., Pescitelli G., Krohn K. Solid-state circular dichroism and hydrogen bonding: Absolute configuration of massarigenin A from Microsphaeropsis sp. Chirality. 2011;23:617–623. doi: 10.1002/chir.20985. PubMed DOI
Guiraud P., Steiman R., Seigle-Murandi F., Buarque De Gusmao N. Antimicrobial and antitumor activities of mycosporulone. J. Nat. Prod. 1999;62:1222–1224. doi: 10.1021/np9805084. PubMed DOI
Abdel-Wahab M.A., Asolkar R.N., Inderbitzin P., Fenical W. Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016. Phytochemistry. 2007;68:1212–1218. doi: 10.1016/j.phytochem.2007.01.020. PubMed DOI PMC
Fukami A., Taniguchi Y., Nakamura T., Rho M.C., Kawaguchi K., Hayashi M., Komiyama K., Omura S. New members of the macrosphelides from Microsphaeropsis sp. FO-5050 IV. J. Antibiot. (Tokyo) 1999;52:501–504. doi: 10.7164/antibiotics.52.501. PubMed DOI
Murakami T., Takada N., Hashimoto M. Biosynthetic studies of spiroleptosphol. Bioorg. Med. Chem. Lett. 2009;19:1122–1125. doi: 10.1016/j.bmcl.2008.12.099. PubMed DOI
Sørensen J.L., Giese H. Influence of carbohydrates on secondary metabolism in Fusarium avenaceum. Toxins (Basel) 2013;5:1655–1663. doi: 10.3390/toxins5091655. PubMed DOI PMC
Robien W. A Critical evaluation of the quality of published 13C NMR data in natural product chemistry. Prog. Chem. Org. Nat. Prod. 2017;105:137–215. doi: 10.1007/978-3-319-49712-9_3. PubMed DOI
Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI
Klamt A., Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkins Trans. 2. 1993;0:799–805. doi: 10.1039/P29930000799. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian09. Gaussian Inc.; Wallingford, CT, USA: 2009. Revision D01.