Marine Ligands of the Pregnane X Receptor (PXR): An Overview
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
PubMed
31569349
PubMed Central
PMC6836225
DOI
10.3390/md17100554
PII: md17100554
Knihovny.cz E-zdroje
- Klíčová slova
- CYP450, PXR, cancer, gene regulation, inflammation, marine origin, natural compound,
- MeSH
- biologické přípravky chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- Porifera chemie MeSH
- pregnanový X receptor metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- Urochordata chemie MeSH
- vodní organismy chemie MeSH
- vyvíjení léků * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- ligandy MeSH
- pregnanový X receptor MeSH
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
Zobrazit více v PubMed
Hu G.P., Yuan J., Sun L., She Z.G., Wu J.H., Lan X.J., Zhu X., Lin Y.C., Chen S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. drugs. 2011;9:514–525. doi: 10.3390/md9040514. PubMed DOI PMC
Gordon E.M., Sankhala K.K., Chawla N., Chawla S.P. Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives. Adv. Ther. 2016;33:1055–1071. doi: 10.1007/s12325-016-0344-3. PubMed DOI PMC
Teplinsky E., Herzog T.J. The efficacy of trabectedin in treating ovarian cancer. Expert Opin. Pharmacother. 2017;18:313–323. doi: 10.1080/14656566.2017.1285282. PubMed DOI
Chai S.C., Cherian M.T., Wang Y.M., Chen T. Small-molecule modulators of PXR and CAR. Biochim. Biophys. Acta. 2016;1859:1141–1154. doi: 10.1016/j.bbagrm.2016.02.013. PubMed DOI PMC
Pope J.E., Deer T.R., Amirdelfan K., McRoberts W.P., Azeem N. The Pharmacology of Spinal Opioids and Ziconotide for the Treatment of Non-Cancer Pain. Curr. Neuropharmacol. 2017;15:206–216. doi: 10.2174/1570159X14666160210142339. PubMed DOI PMC
Schwartsmann G., Brondani da Rocha A., Berlinck R.G., Jimeno J. Marine organisms as a source of new anticancer agents. Lancet Oncol. 2001;2:221–225. doi: 10.1016/S1470-2045(00)00292-8. PubMed DOI
Bertilsson G., Heidrich J., Svensson K., Asman M., Jendeberg L., Sydow-Backman M., Ohlsson R., Postlind H., Blomquist P., Berkenstam A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA. 1998;95:12208–12213. doi: 10.1073/pnas.95.21.12208. PubMed DOI PMC
Lehmann J.M., McKee D.D., Watson M.A., Willson T.M., Moore J.T., Kliewer S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Investig. 1998;102:1016–1023. doi: 10.1172/JCI3703. PubMed DOI PMC
Kliewer S.A., Goodwin B., Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038. PubMed DOI
Timsit Y.E., Negishi M. CAR and PXR: The xenobiotic-sensing receptors. Steroids. 2007;72:231–246. doi: 10.1016/j.steroids.2006.12.006. PubMed DOI PMC
Kakehashi A., Wei M., Fukushima S., Wanibuchi H. Oxidative stress in the carcinogenicity of chemical carcinogens. Cancers. 2013;5:1332–1354. doi: 10.3390/cancers5041332. PubMed DOI PMC
Shah Y.M., Ma X., Morimura K., Kim I., Gonzalez F.J. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G1114–G1122. doi: 10.1152/ajpgi.00528.2006. PubMed DOI
Moreau A., Vilarem M.J., Maurel P., Pascussi J.M. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol. Pharm. 2008;5:35–41. doi: 10.1021/mp700103m. PubMed DOI
Wagner M., Halilbasic E., Marschall H.U., Zollner G., Fickert P., Langner C., Zatloukal K., Denk H., Trauner M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology. 2005;42:420–430. doi: 10.1002/hep.20784. PubMed DOI
Kodama S., Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab. Rev. 2013;45:300–310. doi: 10.3109/03602532.2013.795585. PubMed DOI
Kodama S., Koike C., Negishi M., Yamamoto Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol. Cell Biol. 2004;24:7931–7940. doi: 10.1128/MCB.24.18.7931-7940.2004. PubMed DOI PMC
Harmsen S., Meijerman I., Beijnen J.H., Schellens J.H. The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology. Cancer Treat. Rev. 2007;33:369–380. doi: 10.1016/j.ctrv.2007.02.003. PubMed DOI
Watkins R.E., Wisely G.B., Moore L.B., Collins J.L., Lambert M.H., Williams S.P., Willson T.M., Kliewer S.A., Redinbo M.R. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science. 2001;292:2329–2333. doi: 10.1126/science.1060762. PubMed DOI
DI Masi A., De Marinis E., Ascenzi P., Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Asp. Med. 2009;30:297–343. doi: 10.1016/j.mam.2009.04.002. PubMed DOI
Hyrsova L., Vanduchova A., Dusek J., Smutny T., Carazo A., Maresova V., Trejtnar F., Barta P., Anzenbacher P., Dvorak Z., et al. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol. Lett. 2019;300:81–91. doi: 10.1016/j.toxlet.2018.10.028. PubMed DOI
Li T., Chiang J.Y. Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. 2006;34:756–764. doi: 10.1124/dmd.105.007575. PubMed DOI PMC
Kliewer S.A., Moore J.T., Wade L., Staudinger J.L., Watson M.A., Jones S.A., McKee D.D., Oliver B.B., Willson T.M., Zetterstrom R.H., et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9. PubMed DOI
Johnson D.R., Li C.W., Chen L.Y., Ghosh J.C., Chen J.D. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) Mol. Pharm. 2006;69:99–108. doi: 10.1124/mol.105.013375. PubMed DOI
Staudinger J.L., Goodwin B., Jones S.A., Hawkins-Brown D., MacKenzie K.I., LaTour A., Liu Y., Klaassen C.D., Brown K.K., Reinhard J., et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA. 2001;98:3369–3374. doi: 10.1073/pnas.051551698. PubMed DOI PMC
Fischer S., Beuers U., Spengler U., Zwiebel F.M., Koebe H.G. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin. Chim. Acta. 1996;251:173–186. doi: 10.1016/0009-8981(96)06305-X. PubMed DOI
Konno Y., Negishi M., Kodama S. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab. Pharm. 2008;23:8–13. doi: 10.2133/dmpk.23.8. PubMed DOI
Sonoda J., Xie W., Rosenfeld J.M., Barwick J.L., Guzelian P.S., Evans R.M. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR) Proc. Natl. Acad. Sci. USA. 2002;99:13801–13806. doi: 10.1073/pnas.212494599. PubMed DOI PMC
Staudinger J., Liu Y., Madan A., Habeebu S., Klaassen C.D. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. 2001;29:1467–1472. PubMed
He J., Gao J., Xu M., Ren S., Stefanovic-Racic M., O’Doherty R.M., Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes. 2013;62:1876–1887. doi: 10.2337/db12-1039. PubMed DOI PMC
Spruiell K., Richardson R.M., Cullen J.M., Awumey E.M., Gonzalez F.J., Gyamfi M.A. Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J. Biol. Chem. 2014;289:3244–3261. doi: 10.1074/jbc.M113.494575. PubMed DOI PMC
Hukkanen J., Hakkola J., Rysa J. Pregnane X receptor (PXR)--a contributor to the diabetes epidemic? Drug Metab. Drug Interact. 2014;29:3–15. doi: 10.1515/dmdi-2013-0036. PubMed DOI
Wang X., Fang X., Zhou J., Chen Z., Zhao B., Xiao L., Liu A., Li Y.S., Shyy J.Y., Guan Y., et al. Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proc. Natl. Acad. Sci. USA. 2013;110:13174–13179. doi: 10.1073/pnas.1312065110. PubMed DOI PMC
Pondugula S.R., Mani S. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett. 2013;328:1–9. doi: 10.1016/j.canlet.2012.08.030. PubMed DOI PMC
Synold T.W., Dussault I., Forman B.M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med. 2001;7:584–590. doi: 10.1038/87912. PubMed DOI
Cheng J., Shah Y.M., Gonzalez F.J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharm. Sci. 2012;33:323–330. doi: 10.1016/j.tips.2012.03.003. PubMed DOI PMC
Wang H., Venkatesh M., Li H., Goetz R., Mukherjee S., Biswas A., Zhu L., Kaubisch A., Wang L., Pullman J., et al. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J. Clin. Investig. 2011;121:3220–3232. doi: 10.1172/JCI41514. PubMed DOI PMC
Zhou C., Tabb M.M., Nelson E.L., Grun F., Verma S., Sadatrafiei A., Lin M., Mallick S., Forman B.M., Thummel K.E., et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Investig. 2006;116:2280–2289. doi: 10.1172/JCI26283. PubMed DOI PMC
Dai G., He L., Bu P., Wan Y.J. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology. 2008;47:1277–1287. doi: 10.1002/hep.22129. PubMed DOI
Conde I., Lobo M.V., Zamora J., Perez J., Gonzalez F.J., Alba E., Fraile B., Paniagua R., Arenas M.I. Human pregnane X receptor is expressed in breast carcinomas, potential heterodimers formation between hPXR and RXR-alpha. BMC Cancer. 2008;8:174. doi: 10.1186/1471-2407-8-174. PubMed DOI PMC
Raynal C., Pascussi J.M., Leguelinel G., Breuker C., Kantar J., Lallemant B., Poujol S., Bonnans C., Joubert D., Hollande F., et al. Pregnane X Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol. Cancer. 2010;9:46. doi: 10.1186/1476-4598-9-46. PubMed DOI PMC
Verma S., Tabb M.M., Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer. 2009;9:3. doi: 10.1186/1471-2407-9-3. PubMed DOI PMC
Chen Y., Tang Y., Wang M.T., Zeng S., Nie D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res. 2007;67:10361–10367. doi: 10.1158/0008-5472.CAN-06-4758. PubMed DOI
Zhou J., Liu M., Zhai Y., Xie W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol. Endocrinol. 2008;22:868–880. doi: 10.1210/me.2007-0197. PubMed DOI PMC
Ouyang N., Ke S., Eagleton N., Xie Y., Chen G., Laffins B., Yao H., Zhou B., Tian Y. Pregnane X receptor suppresses proliferation and tumourigenicity of colon cancer cells. Br. J. Cancer. 2010;102:1753–1761. doi: 10.1038/sj.bjc.6605677. PubMed DOI PMC
Maglich J.M., Stoltz C.M., Goodwin B., Hawkins-Brown D., Moore J.T., Kliewer S.A. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol. 2002;62:638–646. doi: 10.1124/mol.62.3.638. PubMed DOI
Saini S.P., Mu Y., Gong H., Toma D., Uppal H., Ren S., Li S., Poloyac S.M., Xie W. Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice. Hepatology. 2005;41:497–505. doi: 10.1002/hep.20570. PubMed DOI
Tien E.S., Negishi M. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica. 2006;36:1152–1163. doi: 10.1080/00498250600861827. PubMed DOI PMC
Carazo Fernandez A., Smutny T., Hyrsova L., Berka K., Pavek P. Chrysin, baicalein and galangin are indirect activators of the human constitutive androstane receptor (CAR) Toxicol. Lett. 2015;233:68–77. doi: 10.1016/j.toxlet.2015.01.013. PubMed DOI
Moore L.B., Parks D.J., Jones S.A., Bledsoe R.K., Consler T.G., Stimmel J.B., Goodwin B., Liddle C., Blanchard S.G., Willson T.M., et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 2000;275:15122–15127. doi: 10.1074/jbc.M001215200. PubMed DOI
Parks D.J., Blanchard S.G., Bledsoe R.K., Chandra G., Consler T.G., Kliewer S.A., Stimmel J.B., Willson T.M., Zavacki A.M., Moore D.D., et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. PubMed DOI
Lim Y.P., Huang J.D. Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet. 2008;23:14–21. doi: 10.2133/dmpk.23.14. PubMed DOI
Guo G.L., Lambert G., Negishi M., Ward J.M., Brewer H.B., Jr., Kliewer S.A., Gonzalez F.J., Sinal C.J. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J. Biol. Chem. 2003;278:45062–45071. doi: 10.1074/jbc.M307145200. PubMed DOI
Xie W., Radominska-Pandya A., Shi Y., Simon C.M., Nelson M.C., Ong E.S., Waxman D.J., Evans R.M. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. USA. 2001;98:3375–3380. doi: 10.1073/pnas.051014398. PubMed DOI PMC
Moore D.D., Kato S., Xie W., Mangelsdorf D.J., Schmidt D.R., Xiao R., Kliewer S.A. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharm. Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. PubMed DOI
Sepe V., D’Amore C., Ummarino R., Renga B., D’Auria M.V., Novellino E., Sinisi A., Taglialatela-Scafati O., Nakao Y., Limongelli V., et al. Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges. Eur. J. Med. Chem. 2014;73:126–134. doi: 10.1016/j.ejmech.2013.12.005. PubMed DOI
Fidler A.E., Holland P.T., Reschly E.J., Ekins S., Krasowski M.D. Activation of a tunicate (Ciona intestinalis) xenobiotic receptor orthologue by both natural toxins and synthetic toxicants. Toxicon. 2012;59:365–372. doi: 10.1016/j.toxicon.2011.12.008. PubMed DOI
Ferron P.J., Hogeveen K., De Sousa G., Rahmani R., Dubreil E., Fessard V., Le Hegarat L. Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells. Toxicology. 2016;33:136–146. doi: 10.1016/j.tiv.2016.02.021. PubMed DOI
Sepe V., Di Leva F.S., D’Amore C., Festa C., De Marino S., Renga B., D’Auria M.V., Novellino E., Limongelli V., D’Souza L., et al. Marine and semi-synthetic hydroxysteroids as new scaffolds for pregnane X receptor modulation. Mar. Drugs. 2014;12:3091–3115. doi: 10.3390/md12063091. PubMed DOI PMC
Festa C., De Marino S., D’Auria M.V., Bifulco G., Renga B., Fiorucci S., Petek S., Zampella A. Solomonsterols A and B from Theonella swinhoei. The first example of C-24 and C-23 sulfated sterols from a marine source endowed with a PXR agonistic activity. J. Med. Chem. 2011;54:401–405. doi: 10.1021/jm100968b. PubMed DOI
Teta R., Della Sala G., Renga B., Mangoni A., Fiorucci S., Costantino V. Chalinulasterol, a chlorinated steroid disulfate from the Caribbean sponge Chalinula molitba. Evaluation of its role as PXR receptor modulator. Mar. Drugs. 2012;10:1383–1390. doi: 10.3390/md10061383. PubMed DOI PMC
Mencarelli A., Migliorati M., Barbanti M., Cipriani S., Palladino G., Distrutti E., Renga B., Fiorucci S. Pregnane-X-receptor mediates the anti-inflammatory activities of rifaximin on detoxification pathways in intestinal epithelial cells. Biochem. Pharm. 2010;80:1700–1707. doi: 10.1016/j.bcp.2010.08.022. PubMed DOI
Sepe V., Ummarino R., D’Auria M.V., Lauro G., Bifulco G., D’Amore C., Renga B., Fiorucci S., Zampella A. Modification in the side chain of solomonsterol A: Discovery of cholestan disulfate as a potent pregnane-X-receptor agonist. Org. Biomol. Chem. 2012;10:6350–6362. doi: 10.1039/c2ob25800e. PubMed DOI
De Marino S., Ummarino R., D’Auria M.V., Chini M.G., Bifulco G., D’Amore C., Renga B., Mencarelli A., Petek S., Fiorucci S., et al. 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids. 2012;77:484–495. doi: 10.1016/j.steroids.2012.01.006. PubMed DOI
De Marino S., Ummarino R., D’Auria M.V., Chini M.G., Bifulco G., Renga B., D’Amore C., Fiorucci S., Debitus C., Zampella A. Theonellasterols and conicasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. J. Med. Chem. 2011;54:3065–3075. doi: 10.1021/jm200169t. PubMed DOI
Renga B., Mencarelli A., D’Amore C., Cipriani S., D’Auria M.V., Sepe V., Chini M.G., Monti M.C., Bifulco G., Zampella A., et al. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS ONE. 2012;7:e30443. doi: 10.1371/journal.pone.0030443. PubMed DOI PMC
Sepe V., Ummarino R., D’Auria M.V., Chini M.G., Bifulco G., Renga B., D’Amore C., Debitus C., Fiorucci S., Zampella A. Conicasterol E, a small heterodimer partner sparing farnesoid X receptor modulator endowed with a pregnane X receptor agonistic activity, from the marine sponge Theonella swinhoei. J. Med. Chem. 2012;55:84–93. doi: 10.1021/jm201004p. PubMed DOI
De Marino S., Sepe V., D’Auria M.V., Bifulco G., Renga B., Petek S., Fiorucci S., Zampella A. Towards new ligands of nuclear receptors. Discovery of malaitasterol A, an unique bis-secosterol from marine sponge Theonella swinhoei. Org. Biomol. Chem. 2011;9:4856–4862. doi: 10.1039/c1ob05378g. PubMed DOI
Imperatore C., D’Aniello F., Aiello A., Fiorucci S., D’Amore C., Sepe V., Menna M. Phallusiasterols A and B: Two new sulfated sterols from the Mediterranean tunicate Phallusia fumigata and their effects as modulators of the PXR receptor. Mar. Drugs. 2014;12:2066–2078. doi: 10.3390/md12042066. PubMed DOI PMC
Imperatore C., Senese M., Aiello A., Luciano P., Fiorucci S., D’Amore C., Carino A., Menna M. Phallusiasterol, C. A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata. Mar. Drugs. 2016;14:117. doi: 10.3390/md14060117. PubMed DOI PMC
Chianese G., Sepe V., Limongelli V., Renga B., D’Amore C., Zampella A., Taglialatela-Scafati O., Fiorucci S. Incisterols, highly degraded marine sterols, are a new chemotype of PXR agonists. Steroids. 2014;83:80–85. doi: 10.1016/j.steroids.2014.02.003. PubMed DOI
Festa C., D’Amore C., Renga B., Lauro G., De Marino S., D’Auria M.V., Bifulco G., Zampella A., Fiorucci S. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar. Drugs. 2013;11:2314–2327. doi: 10.3390/md11072314. PubMed DOI PMC
Grohar P.J., Griffin L.B., Yeung C., Chen Q.R., Pommier Y., Khanna C., Khan J., Helman L.J. Ecteinascidin 743 interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. Neoplasia. 2011;13:145–153. doi: 10.1593/neo.101202. PubMed DOI PMC
Garcia M.J., Saucedo-Cuevas L.P., Munoz-Repeto I., Fernandez V., Robles M.J., Domingo S., Palacios J., Aracil M., Nieto A., Tercero J.C., et al. Analysis of DNA repair-related genes in breast cancer reveals CUL4A ubiquitin ligase as a novel biomarker of trabectedin response. Mol. Cancer Ther. 2013;12:530–541. doi: 10.1158/1535-7163.MCT-12-0768. PubMed DOI
Monk B.J., Herzog T.J., Kaye S.B., Krasner C.N., Vermorken J.B., Muggia F.M., Pujade-Lauraine E., Lisyanskaya A.S., Makhson A.N., Rolski J., et al. Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J. Clin. Oncol. 2010;28:3107–3114. doi: 10.1200/JCO.2009.25.4037. PubMed DOI
Fayette J., Coquard I.R., Alberti L., Boyle H., Meeus P., Decouvelaere A.V., Thiesse P., Sunyach M.P., Ranchere D., Blay J.Y. ET-743: A novel agent with activity in soft-tissue sarcomas. Curr. Opin. Oncol. 2006;18:347–353. doi: 10.1097/01.cco.0000228740.70379.3f. PubMed DOI
Hoda M.A., Pirker C., Dong Y., Schelch K., Heffeter P., Kryeziu K., van Schoonhoven S., Klikovits T., Laszlo V., Rozsas A., et al. Trabectedin Is Active against Malignant Pleural Mesothelioma Cell and Xenograft Models and Synergizes with Chemotherapy and Bcl-2 Inhibition In Vitro. Mol. Cancer Ther. 2016;15:2357–2369. doi: 10.1158/1535-7163.MCT-15-0846. PubMed DOI
Ekins S., Erickson J.A. A pharmacophore for human pregnane X receptor ligands. Drug Metab. Dispos. 2002;30:96–99. doi: 10.1124/dmd.30.1.96. PubMed DOI
Sparfel L., Payen L., Gilot D., Sidaway J., Morel F., Guillouzo A., Fardel O. Pregnane X receptor-dependent and -independent effects of 2-acetylaminofluorene on cytochrome P450 3A23 expression and liver cell proliferation. Biochem. Biophys. Res. Commun. 2003;300:278–284. doi: 10.1016/S0006-291X(02)02847-4. PubMed DOI
Jin S., Gorfajn B., Faircloth G., Scotto K.W. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc. Natl. Acad. Sci. USA. 2000;97:6775–6779. doi: 10.1073/pnas.97.12.6775. PubMed DOI PMC
Kotake-Nara E., Terasaki M., Nagao A. Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells. Biosci. Biotechnol. Biochem. 2005;69:224–227. doi: 10.1271/bbb.69.224. PubMed DOI
Satomi Y. Antitumor and Cancer-preventative Function of Fucoxanthin: A Marine Carotenoid. Anticancer Res. 2017;37:1557–1562. doi: 10.21873/anticanres.11484. PubMed DOI
Hosokawa M., Kudo M., Maeda H., Kohno H., Tanaka T., Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. Biochim. Biophys. Acta. 2004;1675:113–119. doi: 10.1016/j.bbagen.2004.08.012. PubMed DOI
Shiratori K., Ohgami K., Ilieva I., Jin X.H., Koyama Y., Miyashita K., Yoshida K., Kase S., Ohno S. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res. 2005;81:422–428. doi: 10.1016/j.exer.2005.03.002. PubMed DOI
Maeda H., Hosokawa M., Sashima T., Funayama K., Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 2005;332:392–397. doi: 10.1016/j.bbrc.2005.05.002. PubMed DOI
Liu C.L., Lim Y.P., Hu M.L. Fucoxanthin attenuates rifampin-induced cytochrome P450 3A4 (CYP3A4) and multiple drug resistance 1 (MDR1) gene expression through pregnane X receptor (PXR)-mediated pathways in human hepatoma HepG2 and colon adenocarcinoma LS174T cells. Mar. Drugs. 2012;10:242–257. doi: 10.3390/md10010242. PubMed DOI PMC
Cohen P., Holmes C.F., Tsukitani Y. Okadaic acid: A new probe for the study of cellular regulation. Trends Biochem. Sci. 1990;15:98–102. doi: 10.1016/0968-0004(90)90192-E. PubMed DOI
Kamat P.K., Rai S., Swarnkar S., Shukla R., Nath C. Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: A novel tool for Alzheimer’s disease therapeutic application. Mol. Neurobiol. 2014;50:852–865. doi: 10.1007/s12035-014-8699-4. PubMed DOI
Valdiglesias V., Prego-Faraldo M.V., Pasaro E., Mendez J., Laffon B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs. 2013;11:4328–4349. doi: 10.3390/md11114328. PubMed DOI PMC
Festa C., De Marino S., Sepe V., D’Auria M.V., Bifulco G., Debitus C., Bucci M., Vellecco V., Zampella A. Solomonamides A and B, new anti-inflammatory peptides from Theonella swinhoei. Org. Lett. 2011;13:1532–1535. doi: 10.1021/ol200221n. PubMed DOI
Draisci R., Lucentini L., Giannetti L., Boria P., Poletti R. First report of pectenotoxin-2 (PTX-2) in algae (Dinophysis fortii) related to seafood poisoning in Europe. Toxicon. 1996;34:923–935. doi: 10.1016/0041-0101(96)00030-X. PubMed DOI
Kim G.Y., Kim W.J., Choi Y.H. Pectenotoxin-2 from marine sponges: A potential anti-cancer agent-a review. Mar. Drugs. 2011;9:2176–2187. doi: 10.3390/md9112176. PubMed DOI PMC
Allingham J.S., Miles C.O., Rayment I. A structural basis for regulation of actin polymerization by pectenotoxins. J. Mol. Biol. 2007;371:959–970. doi: 10.1016/j.jmb.2007.05.056. PubMed DOI PMC
Youssef D.T., Ibrahim A.K., Khalifa S.I., Mesbah M.K., Mayer A.M., van Soest R.W. New anti-inflammatory sterols from the Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella. Nat. Prod. Commun. 2010;5:27–31. PubMed
Dai J., Yoshida W.Y., Kelly M., Williams P. Pregnane-10,2-carbolactones from a Hawaiian Marine Sponge in the Genus Myrmekioderma. J. Nat. Prod. 2016;79:1464–1467. doi: 10.1021/acs.jnatprod.6b00042. PubMed DOI PMC
Calcabrini C., Catanzaro E., Bishayee A., Turrini E., Fimognari C. Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar. Drugs. 2017;15:310. doi: 10.3390/md15100310. PubMed DOI PMC
Biswas A., Mani S., Redinbo M.R., Krasowski M.D., Li H., Ekins S. Elucidating the ‘Jekyll and Hyde’ nature of PXR: The case for discovering antagonists or allosteric antagonists. Pharm. Res. 2009;26:1807–1815. doi: 10.1007/s11095-009-9901-7. PubMed DOI PMC
Zhou C., Poulton E.J., Grun F., Bammler T.K., Blumberg B., Thummel K.E., Eaton D.L. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol. Pharm. 2007;71:220–229. doi: 10.1124/mol.106.029264. PubMed DOI
Krausova L., Stejskalova L., Wang H., Vrzal R., Dvorak Z., Mani S., Pavek P. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem. Pharm. 2011;82:1771–1780. doi: 10.1016/j.bcp.2011.08.023. PubMed DOI PMC
Pope J.E., Deer T.R. Ziconotide: A clinical update and pharmacologic review. Expert Opin. Pharm. 2013;14:957–966. doi: 10.1517/14656566.2013.784269. PubMed DOI
Oladimeji P.O., Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharm. 2018;93:119–127. doi: 10.1124/mol.117.110155. PubMed DOI PMC
Zhou C. Novel functions of PXR in cardiometabolic disease. Biochim. Biophys. Acta. 2016;1859:1112–1120. doi: 10.1016/j.bbagrm.2016.02.015. PubMed DOI PMC
Trivedi H.D., Lizaola B., Tapper E.B., Bonder A. Management of Pruritus in Primary Biliary Cholangitis: A Narrative Review. Am. J. Med. 2017;130:744. doi: 10.1016/j.amjmed.2017.01.037. PubMed DOI
Li T., Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Adv. Pharm. 2015;74:263–302. doi: 10.1016/bs.apha.2015.04.003. PubMed DOI PMC
Mani S., Dou W., Redinbo M.R. PXR antagonists and implication in drug metabolism. Drug Metab. Rev. 2013;45:60–72. doi: 10.3109/03602532.2012.746363. PubMed DOI PMC
Lee J.C., Hou M.F., Huang H.W., Chang F.R., Yeh C.C., Tang J.Y., Chang H.W. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13:55. doi: 10.1186/1475-2867-13-55. PubMed DOI PMC
Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun. 2015;6:8089. doi: 10.1038/ncomms9089. PubMed DOI PMC
McGivern J.G. Ziconotide: A review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 2007;3:69–85. doi: 10.2147/nedt.2007.3.1.69. PubMed DOI PMC
Ansell S.M. Brentuximab vedotin: Delivering an antimitotic drug to activated lymphoma cells. Expert Opin. Investig. Drugs. 2011;20:99–105. doi: 10.1517/13543784.2011.542147. PubMed DOI
Fiorucci S., Distrutti E., Bifulco G., D’Auria M.V., Zampella A. Marine sponge steroids as nuclear receptor ligands. Trends Pharm. Sci. 2012;33:591–601. doi: 10.1016/j.tips.2012.08.004. PubMed DOI
Guillouzo A., Corlu A., Aninat C., Glaise D., Morel F., Guguen-Guillouzo C. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 2007;168:66–73. doi: 10.1016/j.cbi.2006.12.003. PubMed DOI