• This record comes from PubMed

Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas

. 2019 Sep ; 5 (9) : eaau2406. [epub] 20190925

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world's entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.

See more in PubMed

N. Alexandratos, J. Bruinsma, World Agriculture Towards 2030/2050: The 2012 Revision (Food Agri Org United Nations, Rome, 2012).

Tilman D., Balzer C., Hill J., Befort B. L., Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108, 20260–20264 (2011). PubMed PMC

van Ittersum M. K., van Bussel L. G. J., Wolf J., Grassini P., van Wart J., Guilpart N., Claessens L., de Groot H., Wiebe K., Mason-D’Croz D., Yang H., Boogaard H., van Oortf P. A. J., van Loon M. P., Saito K., Adimo O., Adjei-Nsiah S., Agali A., Bala A., Chikowo R., Kaizzi K., Kouressy M., Makoi J. H. J. R., Ouattara K., Tesfaye K., Cassman K. G., Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. U.S.A. 113, 14964–14969 (2016). PubMed PMC

J. von Braun, The World Food Situation: New Driving Forces and Required Actions (Food Policy Report, Washington, DC, 2008).

Leff B., Ramankutty N., Foley J. A., Geographic distribution of major crops across the world. Global Biogeochem. Cy. 18, 1–27 (2004).

FAOSTAT, www.fao.org/faostat/en/#data [accessed 7 February 2017].

Headey D., Rethinking the global food crisis: The role of trade shocks. Food Policy 36, 136–146 (2011).

USDA, https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery [acccessed 30 March 2017].

Zamperi M., Ceglar A., Dentener F., Toreti A., Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).

Lesk C., Rowhani P., Ramankutty N., Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016). PubMed

Asseng S., Ewert F., Martre P., Rötter R. P., Lobell D. B., Cammarano D., Kimball B. A., Ottman M. J., Wall G. W., White J. W., Reynolds M. P., Alderman P. D., Prasad P. V. V., Aggarwal P. K., Anothai J., Basso B., Biernath C., Challinor A. J., De Sanctis G., Doltra J., Fereres E., Garcia-Vila M., Gayler S., Hoogenboom G., Hunt L. A., Izaurralde R. C., Jabloun M., Jones C. D., Kersebaum K. C., Koehler A.-K., Müller C., Kumar S. N., Nendel C., O’Leary G., Olesen J. E., Palosuo T., Priesack E., Rezaei E. E., Ruane A. C., Semenov M. A., Shcherbak I., Stöckle C., Stratonovitch P., Streck T., Supit I., Tao F., Thorburn P. J., Waha K., Wang E., Wallach D., Wolf J., Zhao Z., Zhu Y., Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

Liu B., Asseng S., Müller C., Ewert F., Elliott J., Lobell D. B., Martre P., Ruane A. C., Wallach D., Jones J. W., Rosenzweig C., Aggarwal P. K., Alderman P. D., Anothai J., Basso B., Biernath C., Cammarano D., Challinor A., Deryng D., De Sanctis G., Doltra J., Fereres E., Folberth C., Garcia-Vila M., Gayler S., Hoogenboom G., Hunt L. A., Izaurralde R. C., Jabloun M., Jones C. D., Kersebaum K. C., Kimball B. A., Koehler A.-K., Kumar S. N., Nendel C., O’Leary G. J., Olesen J. E., Ottman M. J., Palosuo T., Vara Prasad P. V., Priesack E., Pugh T. A. M., Reynolds M., Rezaei E. E., Rötter R. P., Schmid E., Semenov M. A., Shcherbak I., Stehfest E., Stöckle C. O., Stratonovitch P., Streck T., Supit I., Tao F., Thorburn P., Waha K., Wall G. W., Wang E., White J. W., Wolf J., Zhao Z., Zhu Y., Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

Ortiz R., Sayre K. D., Govaerts B., Gupta R., Subbarao G. V., Ban T., Hodson D., Dixon J. M., Ortiz-Monasterio J. I., Reynolds M., Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 126, 46–58 (2008).

Daryanto S., Wang L., Jacinthe P.-A., Global synthesis of drought effects on maize and wheat production. PLOS ONE 11, e0156362 (2016). PubMed PMC

Dai A., Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

Wheeler T., von Braun J., Climate change impacts on global food security. Science 341, 508–513 (2013). PubMed

FAO, IFAD, UNICEF, WFP, WHO, The State of Food Security and Nutrition in the World 2018. Building Climate Resilience For Food Security and Nutrition (FAO, Rome, 2018).

Tadasse G., Algieri B., Kalkuhl M., von Braun J., Drivers and triggers of international food price spikes and volatility. Food Policy 47, 117–128 (2014).

Schewe J., Otto C., Frieler K., The role of storage dynamics in annual wheat prices. Environ. Res. Lett. 12, 054005 (2017).

J. Baffes, T. Haniotis, What Explains Agricultural Price Movements? Policy Research Working Paper, No. WPS 7589 (World Bank Group,Washington, D.C., 2016).

J. von Braun, G. Tadasse, Global Food Price Volatility and Spikes: An Overview of Costs, Causes, and Solutions, ZEF- Discussion Papers on Development Policy No. 161 (Center for Development Research, Bonn, 2012).

G. Tadasse, B. Algieri, M. Kalkuhl, J. von Braun, Drivers and triggers of international food price spikes and volatility, in Food Price Volatility and Its Implications for Food Security And Policy, M. Kalkuhl, J. von Braun, M. Torero Eds. (Springer, 2016).

Chung U., Gbegbelegbe S., Shiferaw B., Robertson R., Yun J. I., Tesfaye K., Hoogenboom G., Sonder K., Modeling the effect of a heat wave on maize production in the USA and its implications on food security in the developing world. Weather Clim. Extrem. 5, 67–77 (2014).

Harris I., Jones P. D., Osborn T. J., Lister D. H., Updated high-resolution grids of monthly climatic observations–The CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

Taylor K. E., Stouffer R. J., Meehl G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

Schellnhuber H. J., Rahmstorf S., Winkelmann R., Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

Popp A., Calvin K., Fujimori S., Havlik P., Humpenöder F., Stehfest E., Bodirsky B. L., Dietrich J. P., Doelmann J. C., Gusti M., Hasegawa T., Kyle P., Obersteiner M., Tabeau A., Takahashi K., Valin H., Waldhoff S., Weindl I., Wise M., Kriegler E., Lotze-Campen H., Fricko O., Riahi K., van Vuuren P. D., Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 42, 331–345 (2017).

Leclère D., Havlík P., Fuss S., Schmid E., Mosnier A., Walsh B., Valin H., Herrero M., Khabarov N., Obersteiner M., Climate change induced transformations of agricultural systems: Insights from a global model. Environ. Res. Lett. 9, 124018 (2014).

Mosnier A., Obersteiner M., Havlík P., Schmid E., Khabarov N., Westphal M., Valin H., Frank S., Albrecht F., Global food markets, trade and the cost of climate change adaptation. Food Secur. 6, 29–44 (2014).

Zimmermann A., Webber H., Zhao G., Ewert F., Kros J., Wolf J., Britz W., de Vries W., Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agr. Syst. 157, 81–92 (2017).

Trnka M., Rötter R. P., Ruiz-Ramos M., Kersebaum K. C., Olesen J. E., Žalud Z., Semenov M. A., Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).

Lobell D. B., Climate change adaptation in crop production: Beware of illusions. Glob. Food Sec. 3, 72–76 (2014).

West P. C., Gibbs H. K., Monfreda C., Wagner J., Barford C. C., Carpenter S. R., Foley J. A., Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. U.S.A. 107, 19645–19648 (2010). PubMed PMC

Challinor A. J., Watson J., Lobell D. B., Howden S. M., Smith D. R., Chhetri N., A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

Fitzgerald G. J., Tausz M., O’Leary G., Mollah M. R., Tausz-Posch S., Seneweera S., Mock I., Löw M., Partington D. L., McNeil D., Norton R. M., Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Glob. Chang. Biol. 22, 2269–2284 (2016). PubMed

Medina S., Vicente R., Amador A., Araus J. L., Interactive effects of elevated [CO2] and water stress on physiological traits and gene expression during vegetative growth in four durum wheat genotypes. Front. Plant Sci. 7, 1738 (2016). PubMed PMC

Manderscheid R., Weigel H.-J., Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment. Agron. Sustain. Dev. 27, 79–87 (2007).

Jin Z., Ainsworth E. A., Leakey A. D. B., Lobell D. B., Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 24, e522–e533 (2018). PubMed

Schauberger B., Archontoulis S., Arneth A., Balkovic J., Ciais P., Deryng D., Elliott J., Folberth C., Khabarov N., Müller C., Pugh T. A. M., Rolinski S., Schaphoff S., Schmid E., Wang X., Schlenker W., Frieler K., Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017). PubMed PMC

Gray S. B., Dermody O., Klein S. P., Locke A. M., McGrath J. M., Paul R. E., Rosenthal D. M., Ruiz-Vera U. M., Siebers M. H., Strellner R., Ainsworth E. A., Bernacchi C. J., Long S. P., Ort D. R., Leakey A. D. B., Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016). PubMed

Dai A., Zhao T., Chen J., Climate change and drought: A precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018).

Olesen J. E., Trnka M., Kersebaum K. C., Skjelvåg A. O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F., Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112 (2011).

Semenov M. A., Shewry P. R., Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (2011). PubMed PMC

Trnka M., Olesen J. E., Kersebaum K. C., Skjelvåg A. O., Eitzinger J., Seguin B., Peltonen-Sainio P., Rötter R., Iglesias A., Orlandini S., Dubrovský M., Hlavinka P., Balek J., Eckersten H., Cloppet E., Calanca P., Gobin A., Vučetić V., Nejedlik P., Kumar S., Lalic B., Mestre A., Rossi F., Kozyra J., Alexandrov V., Semerádová D., Žalud Z., Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 17, 2298–2318 (2011).

Varshney R. K., Tuberosa R., Tardieu F., Progress in understanding drought tolerance: From alleles to cropping systems. J. Exp. Bot. 69, 3175–3179 (2018). PubMed PMC

Elliott J., Deryng D., Müller C., Frieler K., Konzmann M., Gerten D., Glotter M., Flörke M., Wada Y., Best N., Eisner S., Fekete B. M., Folberth C., Foster I., Gosling S. N., Haddeland I., Khabarov N., Ludwig F., Masaki Y., Olin S., Rosenzweig C., Ruane A. C., Satoh Y., Schmid E., Stacke T., Tang Q., Wisser D., Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3239–3244 (2014). PubMed PMC

Ruiz-Ramos M., Ferrise R., Rodríguez A., Lorite I. J., Bindi M., Carter T. R., Fronzek S., Palosuo T., Pirttioja N., Baranowski P., Buis S., Cammarano D., Chen Y., Dumont B., Ewert F., Gaiser T., Hlavinka P., Hoffmann H., Höhn J. G., Jurecka F., Kersebaum K. C., Krzyszczak J., Lana M., Mechiche-Alami A., Minet J., Montesino M., Nendel C., Porter J. R., Ruget F., Semenov M. A., Steinmetz Z., Stratonovitch P., Supit I., Tao F., Trnka M., de Wit A., Rötter R. P., Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agr. Syst. 159, 260–274 (2018).

Fereres E., Soriano M. A., Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58, 147–159 (2006). PubMed

Sears L., Caparelli J., Lee C., Pan D., Strandberg G., Vuu L., Lin Lawell C.-Y. C., Jevons’ paradox and efficient irrigation technology. Sustainability 10, 1590 (2018).

Stagnari F., Galieni A., Speca S., Cafiero G., Pisante M., Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Res. 167, 51–63 (2014).

Qin W., Hu C., Oenema O., Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 5, 16210 (2015). PubMed PMC

Biazin B., Sterk G., Temesgen M., Abdulkedir A., Stroosnijder L., Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth A/B/C 47-48, 139–151 (2012).

Nelson G. C., Valin H., Sands R. D., Havlík P., Ahammad H., Deryng D., Elliott J., Fujimori S., Hasegawa T., Heyhoe E., Kyle P., von Lampe M., Lotze-Campen H., Mason D'Croz D., van Meijl H., van der Mensbrugghe D., Müller C., Popp A., Robertson R., Robinson S., Schmid E., Schmitz C., Tabeau A., Willenbockel D., Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. U.S.A. 111, 3274–3279 (2014). PubMed PMC

Hoekstra A. Y., Mekonnen M. M., Chapagain A. K., Mathews R. E., Richter B. D., Global monthly water scarcity: Blue water footprints versus blue water availability. PLOS ONE 7, e32688 (2012). PubMed PMC

Taylor R. G., Scanlon B., Döll P., Rodell M., van Beek R., Wada Y., Longuevergne L., Leblanc M., Famiglietti J. S., Edmunds M., Konikow L., Green T. R., Chen J., Taniguchi M., Bierkens M. F. P., MacDonald A., Fan Y., Maxwell R. M., Yechieli Y., Gurdak J. J., Allen D. M., Shamsudduha M., Hiscock K., Yeh P. J. F., Holman I., Treidel H., Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

Ray D. K., Mueller N. D., West P. C., Foley J. A., Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8, e66428 (2013). PubMed PMC

Mueller N. D., Gerber J. S., Johnston M., Ray D. K., Ramankutty N., Foley J. A., Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012). PubMed

Vicente-Serrano S. M., Beguería S., López-Moreno J. I., A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate 23, 1696–1718 (2010).

van Vuuren D. P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G. C., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshausen M., Nakicenovic N., Smith S. J., Rose S. K., The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).

Ramankutty N., Evan A. T., Monfreda C., Foley J. A., Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

Sacks W. J., Deryng D., Foley J. A., Ramankutty N., Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

Feng S., Hu Q., Huang W., Ho C.-H., Li R., Tang Z., Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global Planet. Change 112, 41–52 (2014).

Fan Y., van den Dool H., A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. 113, D01103 (2008).

New M., Hulme M., Jones P. D., Representing twentieth-century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J. Climate 12, 829–856 (1999).

R. G. Allen, L. S. Pereira, D. Raes, M. Smith, Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper 56, FAO, Rome, 1998).

Scheff J., Frierson D. M. W., Scaling potential evapotranspiration with greenhouse warming. J. Climate 27, 1539–1558 (2014).

M. Collins, R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver, M. Wehner, Long-term climate change: Projections, commitments and irreversibility, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Eds. (Cambridge Univ. Press, 2013), pp. 1029–1136.

Sherwood S., Fu Q., A drier future. Science 343, 737–739 (2014). PubMed

Fu Q., Feng S., Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).

van der Schrier G., Efthymiadis D., Briffa K. R., Jones P. D., European Alpine moisture variability for 1800–2003. Int. J. Climatol. 27, 415–427 (2007).

Blauhut V., Gudmundsson L., Stahl K., Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 10, 014008 (2015).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...