Missense Mutations in NKAP Cause a Disorder of Transcriptional Regulation Characterized by Marfanoid Habitus and Cognitive Impairment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U54 HD086984
NICHD NIH HHS - United States
PubMed
31587868
PubMed Central
PMC6848994
DOI
10.1016/j.ajhg.2019.09.009
PII: S0002-9297(19)30348-9
Knihovny.cz E-zdroje
- Klíčová slova
- P-complex, spliceosome, splicing, transcriptome,
- MeSH
- dánio pruhované genetika MeSH
- down regulace genetika MeSH
- exony genetika MeSH
- genetická transkripce genetika MeSH
- geny vázané na chromozom X genetika MeSH
- histondeacetylasy genetika MeSH
- kognitivní dysfunkce genetika MeSH
- lidé MeSH
- missense mutace genetika MeSH
- regulace genové exprese genetika MeSH
- represorové proteiny genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histondeacetylasy MeSH
- histone deacetylase 3 MeSH Prohlížeč
- NKAP protein, human MeSH Prohlížeč
- represorové proteiny MeSH
NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.
Center for Applied Genomics The Children's Hospital of Philadelphia Philadelphia PA 19104 USA
Department of Medical Genetics Osaka Women's and Children's Hospital Osaka 594 1101 Japan
Department of Medical Genetics University Hospital Trencin Trencin 91171 Slovakia
Department of Pediatrics Seoul National University College of Medicine Seoul 03080 Republic of Korea
Division of Medical Genetics Nagano Children's Hospital Azumino 399 8205 Japan
Institute for Clinical Genetics TU Dresden Dresden 01307 Germany
Medical Genetics Unit Policlinico Sant'Orsola Malpighi University of Bologna Bologna 40138 Italy
Zebrafish Core Facility The Children's Hospital of Philadelphia Philadelphia PA 19104 USA
Zobrazit více v PubMed
Hackmann K., Rump A., Haas S.A., Lemke J.R., Fryns J.P., Tzschach A., Wieczorek D., Albrecht B., Kuechler A., Ripperger T. Tentative clinical diagnosis of Lujan-Fryns syndrome--A conglomeration of different genetic entities? Am. J. Med. Genet. A. 2016;170A:94–102. PubMed
Deciphering Developmental Disorders Study Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–438. PubMed PMC
Sobreira N., Schiettecatte F., Boehm C., Valle D., Hamosh A. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum. Mutat. 2015;36:425–431. PubMed PMC
Li T., Chen L., Cheng J., Dai J., Huang Y., Zhang J., Liu Z., Li A., Li N., Wang H. SUMOylated NKAP is essential for chromosome alignment by anchoring CENP-E to kinetochores. Nat. Commun. 2016;7:12969. PubMed PMC
Pajerowski A.G., Nguyen C., Aghajanian H., Shapiro M.J., Shapiro V.S. NKAP is a transcriptional repressor of notch signaling and is required for T cell development. Immunity. 2009;30:696–707. PubMed PMC
Chen D., Li Z., Yang Q., Zhang J., Zhai Z., Shu H.B. Identification of a nuclear protein that promotes NF-kappaB activation. Biochem. Biophys. Res. Commun. 2003;310:720–724. PubMed
Burgute B.D., Peche V.S., Steckelberg A.L., Glöckner G., Gaßen B., Gehring N.H., Noegel A.A. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res. 2014;42:3177–3193. PubMed PMC
Fica S.M., Oubridge C., Wilkinson M.E., Newman A.J., Nagai K. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science. 2019;363:710–714. PubMed PMC
LaFoya B., Munroe J.A., Mia M.M., Detweiler M.A., Crow J.J., Wood T., Roth S., Sharma B., Albig A.R. Notch: A multi-functional integrating system of microenvironmental signals. Dev. Biol. 2016;418:227–241. PubMed PMC
Verrecchia F., Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J. Invest. Dermatol. 2002;118:211–215. PubMed
Vaquero-Garcia J., Barrera A., Gazzara M.R., González-Vallinas J., Lahens N.F., Hogenesch J.B., Lynch K.W., Barash Y. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife. 2016;5:e11752. PubMed PMC
Sakharkar M.K., Perumal B.S., Sakharkar K.R., Kangueane P. An analysis on gene architecture in human and mouse genomes. In Silico Biol. (Gedrukt) 2005;5:347–365. PubMed
Amsterdam A., Nissen R.M., Sun Z., Swindell E.C., Farrington S., Hopkins N. Identification of 315 genes essential for early zebrafish development. Proc. Natl. Acad. Sci. USA. 2004;101:12792–12797. PubMed PMC
Golling G., Amsterdam A., Sun Z., Antonelli M., Maldonado E., Chen W., Burgess S., Haldi M., Artzt K., Farrington S. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 2002;31:135–140. PubMed
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Exome Aggregation Consortium Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. PubMed PMC
Tukiainen T., Villani A.C., Yen A., Rivas M.A., Marshall J.L., Satija R., Aguirre M., Gauthier L., Fleharty M., Kirby A., GTEx Consortium. Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group. Statistical Methods groups—Analysis Working Group. Enhancing GTEx (eGTEx) groups. NIH Common Fund. NIH/NCI. NIH/NHGRI. NIH/NIMH. NIH/NIDA. Biospecimen Collection Source Site—NDRI. Biospecimen Collection Source Site—RPCI. Biospecimen Core Resource—VARI. Brain Bank Repository—University of Miami Brain Endowment Bank. Leidos Biomedical—Project Management. ELSI Study. Genome Browser Data Integration &Visualization—EBI. Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–248. PubMed
Pajerowski A.G., Shapiro M.J., Gwin K., Sundsbak R., Nelson-Holte M., Medina K., Shapiro V.S. Adult hematopoietic stem cells require NKAP for maintenance and survival. Blood. 2010;116:2684–2693. PubMed PMC
Dietz H.C., Cutting G.R., Pyeritz R.E., Maslen C.L., Sakai L.Y., Corson G.M., Puffenberger E.G., Hamosh A., Nanthakumar E.J., Curristin S.M. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–339. PubMed
Neptune E.R., Frischmeyer P.A., Arking D.E., Myers L., Bunton T.E., Gayraud B., Ramirez F., Sakai L.Y., Dietz H.C. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003;33:407–411. PubMed
Putnam E.A., Zhang H., Ramirez F., Milewicz D.M. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat. Genet. 1995;11:456–458. PubMed
Gabel H.W., Kinde B., Stroud H., Gilbert C.S., Harmin D.A., Kastan N.R., Hemberg M., Ebert D.H., Greenberg M.E. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522:89–93. PubMed PMC
King I.F., Yandava C.N., Mabb A.M., Hsiao J.S., Huang H.S., Pearson B.L., Calabrese J.M., Starmer J., Parker J.S., Magnuson T. Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013;501:58–62. PubMed PMC