Measurement of S-Nitrosoglutathione Reductase Activity in Plants
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Nitric oxide, Plant stress, S-nitrosation, S-nitrosoglutathione reductase, S-nitrosothiols,
- MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- barvení a značení metody MeSH
- enzymatické testy metody MeSH
- fluorescence MeSH
- NAD chemie MeSH
- nativní elektroforéza na polyakrylamidovém gelu MeSH
- nitrosace MeSH
- oxid dusnatý metabolismus MeSH
- průběh práce MeSH
- rostlinné extrakty izolace a purifikace metabolismus MeSH
- rostliny enzymologie MeSH
- S-nitrosoglutathion chemická syntéza chemie MeSH
- S-nitrosothioly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- formaldehyde dehydrogenase, glutathione-independent MeSH Prohlížeč
- NAD MeSH
- oxid dusnatý MeSH
- rostlinné extrakty MeSH
- S-nitrosoglutathion MeSH
- S-nitrosothioly MeSH
S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.
Citace poskytuje Crossref.org