Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31616269
PubMed Central
PMC6775193
DOI
10.3389/fnhum.2019.00329
Knihovny.cz E-zdroje
- Klíčová slova
- body ownership transfer, brain-computer interface, embodiment, gamification, motor imagery,
- Publikační typ
- časopisecké články MeSH
This paper presents a gamified motor imagery brain-computer interface (MI-BCI) training in immersive virtual reality. The aim of the proposed training method is to increase engagement, attention, and motivation in co-adaptive event-driven MI-BCI training. This was achieved using gamification, progressive increase of the training pace, and virtual reality design reinforcing body ownership transfer (embodiment) into the avatar. From the 20 healthy participants performing 6 runs of 2-class MI-BCI training (left/right hand), 19 were trained for a basic level of MI-BCI operation, with average peak accuracy in the session = 75.84%. This confirms the proposed training method succeeded in improvement of the MI-BCI skills; moreover, participants were leaving the session in high positive affect. Although the performance was not directly correlated to the degree of embodiment, subjective magnitude of the body ownership transfer illusion correlated with the ability to modulate the sensorimotor rhythm.
Zobrazit více v PubMed
Ahn M., Jun S. C. (2015). Performance variation in motor imagery brain–computer interface: a brief review. J. Neurosci. Methods 243, 103–110. 10.1016/j.jneumeth.2015.01.033 PubMed DOI
Ahn S., Jun S. C. (2012). Feasibility of hybrid BCI using ERD- and SSSEP- BCI, in 2012 12th International Conference on Control, Automation and Systems (JeJu Island: ), 2053–2056.
Alimardani M., Nishio S., Ishiguro H. (2013). Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators. Sci. Rep. 3:2396. 10.1038/srep02396 PubMed DOI PMC
Alimardani M., Nishio S., Ishiguro H. (2016a). The importance of visual feedback design in BCIs; from embodiment to motor imagery learning. PLoS ONE 11:e0161945. 10.1371/journal.pone.0161945 PubMed DOI PMC
Alimardani M., Nishio S., Ishiguro H. (2016b). Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot. Sci. Rep. 6:33514. 10.1038/srep33514 PubMed DOI PMC
Alimardani M., Nishio S., Ishiguro H. (2018). Exploring minimal requirement for body ownership transfer by brain–computer interface, in Geminoid Studies: Science and Technologies for Humanlike Teleoperated Androids, eds Ishiguro H., Dalla Libera F. (Singapore: Springer; ), 329–338.
Barsotti M., Leonardis D., Vanello N., Bergamasco M., Frisoli A. (2018). Effects of continuous kinaesthetic feedback based on tendon vibration on motor imagery BCI performance. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 105–114. 10.1109/TNSRE.2017.2739244 PubMed DOI
Bell C. J., Shenoy P., Chalodhorn R., Rao R. P. N. (2008). Control of a humanoid robot by a noninvasive brain–computer interface in humans. J. Neural Eng. 5, 214–220. 10.1088/1741-2560/5/2/012 PubMed DOI
Blanke O., Metzinger T. (2009). Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13. 10.1016/j.tics.2008.10.003 PubMed DOI
Botvinick M., Cohen J. (1998). Rubber hands' feel'touch that eyes see. Nature 391:756. 10.1038/35784 PubMed DOI
Braun N., Emkes R., Thorne J. D., Debener S. (2016). Embodied neurofeedback with an anthropomorphic robotic hand. Sci. Rep. 6:37696. 10.1038/srep37696 PubMed DOI PMC
Cao T., Wan F., Wong C. M., da Cruz J. N., Hu Y. (2014). Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces. Biomed. Eng. Online 13:28. 10.1186/1475-925X-13-28 PubMed DOI PMC
Chang C., Hsu S., Pion-Tonachini L., Jung T. (2018). Evaluation of artifact subspace reconstruction for automatic EEG artifact removal, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Honolulu, HI: ), 1242–1245. PubMed
Chavarriaga R., Fried-Oken M., Kleih S., Lotte F., Scherer R. (2017). Heading for new shores! Overcoming pitfalls in BCI design. Brain-Comput. Interfaces 4, 60–73. 10.1080/2326263X.2016.1263916 PubMed DOI PMC
Cohen O., Druon S., Lengagne S., Mendelsohn A., Malach R., Kheddar A., et al. (2012). fMRI robotic embodiment: a pilot study, in 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Rome: ), 314–319.
David N., Newen A., Vogeley K. (2008). The “sense of agency” and its underlying cognitive and neural mechanisms. Conscious. Cogn. 17, 523–534. 10.1016/j.concog.2008.03.004 PubMed DOI
de Freitas S. (2011). Technology: game for change. Nature 470, 330–331. 10.1038/470330a DOI
Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009 PubMed DOI
Dickhaus T., Sannelli C., Müller K.-R., Curio G., Blankertz B. (2009). Predicting BCI performance to study BCI illiteracy. BMC Neurosci. 10(Suppl. 1):P84 10.1186/1471-2202-10-S1-P84 DOI
Dummer T., Picot-Annand A., Neal T., Moore C. (2009). Movement and the rubber hand illusion. Perception 38, 271–280. 10.1068/p5921 PubMed DOI
Ehrsson H. H. (2012). The concept of body ownership and its relation to multisensory integration, in The New Handbook of Multisensory Process, ed Stein B. (Cambridge, MA: MIT Press; ), 19.
Ehrsson H. H., Holmes N. P., Passingham R. E. (2005). Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573. 10.1523/JNEUROSCI.0800-05.2005 PubMed DOI PMC
Evans N., Gale S., Schurger A., Blanke O. (2015). Visual feedback dominates the sense of agency for brain-machine actions. PLoS ONE 10:e0130019. 10.1371/journal.pone.0130019 PubMed DOI PMC
Gallagher S. (2000). Philosophical conceptions of the self: implications for cognitive science. Trends Cogn. Sci. 4, 14–21. 10.1016/S1364-6613(99)01417-5 PubMed DOI
Gallagher S. (2007). The natural philosophy of agency. Philos. Compass 2, 347–357. 10.1111/j.1747-9991.2007.00067.x DOI
Grosse-Wentrup M., Schölkopf B. (2012). High gamma-power predicts performance in sensorimotor-rhythm brain–computer interfaces. J. Neural Eng. 9:046001. 10.1088/1741-2560/9/4/046001 PubMed DOI
Guger C., Allison B. Z., Grosswindhager B., Prückl R., Hintermüller C., Kapeller C., et al. . (2012). How many people could use an SSVEP BCI? Front. Neurosci. 6:169. 10.3389/fnins.2012.00169 PubMed DOI PMC
Hamari J., Koivisto J., Sarsa H. (2014). Does gamification work? – A literature review of empirical studies on gamification, in 2014 47th Hawaii International Conference on System Sciences (Waikoloa, HI: ), 3025–3034. 10.1109/HICSS.2014.377 DOI
Hammer E. M., Halder S., Blankertz B., Sannelli C., Dickhaus T., Kleih S., et al. . (2012). Psychological predictors of SMR-BCI performance. Biol. Psychol. 89, 80–86. 10.1016/j.biopsycho.2011.09.006 PubMed DOI
Hwang H.-J., Kwon K., Im C.-H. (2009). Neurofeedback-based motor imagery training for brain–computer interface (BCI). J. Neurosci. Methods 179, 150–156. 10.1016/j.jneumeth.2009.01.015 PubMed DOI
Jeannerod M. (2007). Being oneself. J. Physiol. Paris 101, 161–168. 10.1016/j.jphysparis.2007.11.005 PubMed DOI
Jeunet C., Jahanpour E., Lotte F. (2016a). Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study. J. Neural Eng. 13:036024. 10.1088/1741-2560/13/3/036024 PubMed DOI
Jeunet C., N'Kaoua B., Lotte F. (2016b). Advances in user-training for mental-imagery-based BCI control: psychological and cognitive factors and their neural correlates. Prog. Brain Res. 228, 3–35. 10.1016/bs.pbr.2016.04.002 PubMed DOI
Juliano J. M., Spicer R. P., Vourvopoulos A., Lefebvre S., Jann K., Ard T., et al. (2019). Embodiment is related to better performance on an immersive brain computer interface in head-mounted virtual reality: a pilot study. bioRxiv 578682. 10.1101/578682 PubMed DOI PMC
Kaiser V., Bauernfeind G., Kreilinger A., Kaufmann T., Kübler A., Neuper C., et al. . (2014). Cortical effects of user training in a motor imagery based brain–computer interface measured by fNIRS and EEG. NeuroImage 85, 432–444. 10.1016/j.neuroimage.2013.04.097 PubMed DOI
Kalckert A., Ehrsson H. H. (2012). Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6:40. 10.3389/fnhum.2012.00040 PubMed DOI PMC
Kilteni K., Groten R., Slater M. (2012). The sense of embodiment in virtual reality. Presence 21, 373–387. 10.1162/PRES_a_00124 DOI
Kishore S., González-Franco M., Hintemüller C., Kapeller C., Guger C., Slater M., et al. (2014). Comparison of SSVEP BCI and eye tracking for controlling a humanoid robot in a social environment. Presence 23, 242–252. 10.1162/PRES_a_00192 DOI
Kokkinara E., Kilteni K., Blom K. J., Slater M. (2016). First person perspective of seated participants over a walking virtual body leads to illusory agency over the walking. Sci. Rep. 6:28879. 10.1038/srep28879 PubMed DOI PMC
Kosmyna N., Lécuyer A. (2017). Designing guiding systems for brain-computer interfaces. Front. Hum. Neurosci. 11:396. 10.3389/fnhum.2017.00396 PubMed DOI PMC
Krausz G., Scherer R., Korisek G., Pfurtscheller G. (2003). Critical decision-speed and information transfer in the “Graz Brain–Computer Interface. Appl. Psychophysiol. Biofeedback 28, 233–240. 10.1023/A:1024637331493 PubMed DOI
Kübler A., Neumann N., Wilhelm B., Hinterberger T., Birbaumer N. (2004). Predictability of brain-computer communication. J. Psychophysiol. 18, 121–129. 10.1027/0269-8803.18.23.121 DOI
Leeb R., Lee F., Keinrath C., Scherer R., Bischof H., Pfurtscheller G. (2007). Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 473–482. 10.1109/TNSRE.2007.906956 PubMed DOI
Leonardis D., Frisoli A., Solazzi M., Bergamasco M. (2012). Illusory perception of arm movement induced by visuo-proprioceptive sensory stimulation and controlled by motor imagery, in 2012 IEEE Haptics Symposium (HAPTICS) (Vancouver, BC: ), 421–424. 10.1109/HAPTIC.2012.6183825 DOI
Longo M. R., Schüür F., Kammers M. P. M., Tsakiris M., Haggard P. (2008). What is embodiment? A psychometric approach. Cognition 107, 978–998. 10.1016/j.cognition.2007.12.004 PubMed DOI
Lopez S., Bini F., Del Percio C., Marinozzi F., Celletti C., Suppa A., et al. . (2017). Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience 352, 236–248. 10.1016/j.neuroscience.2017.03.015 PubMed DOI
Lotte F., Bougrain L., Clerc M. (2015). Electroencephalography (EEG)-based brain-computer interfaces, in Wiley Encyclopedia of Electrical and Electronics Engineering, ed. Webster J. G. (New York, NY: Wiley-Interscience; ). Available online at: https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F047134608X.W8278
Lotte F., Larrue F., Muehl C. (2013). Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design. Front. Hum. Neurosci. 7:568. 10.3389/fnhum.2013.00568 PubMed DOI PMC
Martens N., Jenke R., Abu-Alqumsan M., Kapeller C., Hintermüller C., Guger C., et al. (2012). Towards robotic re-embodiment using a Brain-and-Body-Computer Interface, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (Vilamoura: ), 5131–5132.
Müller-Putz G. R., Scherer R., Brunner C., Leeb R., Pfurtscheller G. (2008). Better than random? A closer look on BCI results. Int. J. Bioelectromagn. 10, 52–55.
Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G. (2009). Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120, 239–247. 10.1016/j.clinph.2008.11.015 PubMed DOI
Nijboer F., Birbaumer N., Kubler A. (2010). The influence of psychological state and motivation on brain—computer interface performance in patients with amyotrophic lateral sclerosis - a longitudinal study. Front. Neurosci. 4:55. 10.3389/fnins.2010.00055 PubMed DOI PMC
Nijboer F., Furdea A., Gunst I., Mellinger J., McFarland D. J., Birbaumer N., et al. . (2008). An auditory brain-computer interface (BCI). J. Neurosci. Methods 167, 43–50. 10.1016/j.jneumeth.2007.02.009 PubMed DOI PMC
Oculus (2013). Oculus VR – Latency Tester Demo. Available online at: https://www.youtube.com/watch?v=z4y4Nfj-MlM (accessed July 10, 2019).
Penaloza C. I., Alimardani M., Nishio S. (2018). Android feedback-based training modulates sensorimotor rhythms during motor imagery. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 666–674. 10.1109/TNSRE.2018.2792481 PubMed DOI
Perez-Marcos D., Slater M., Sanchez-Vives M. V. (2009). Inducing a virtual hand ownership illusion through a brain-computer interface. Neuroreport 20, 589–594. 10.1097/WNR.0b013e32832a0a2a PubMed DOI
Petit D., Gergondet P., Cherubini A., Kheddar A. (2015). An integrated framework for humanoid embodiment with a BCI, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (Seattle, WA: ), 2882–2887.
Pfurtscheller G., Lopes da Silva F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857. 10.1016/S1388-2457(99)00141-8 PubMed DOI
Pfurtscheller G., Neuper C. (2001). Motor imagery and direct brain-computer communication. Proc. IEEE 89, 1123–1134. 10.1109/5.939829 DOI
Raaen K., Kjellmo I. (2015). Measuring latency in virtual reality systems, in Entertainment Computing - ICEC 2015, Vol. 9353, eds Chorianopoulos K., Divitini M., Baalsrud Hauge J., Jaccheri L., Malaka R. (Cham: Springer International Publishing; ), 457–462. 10.1007/978-3-319-24589-8_40 DOI
Renard Y., Lotte F., Gibert G., Congedo M., Maby E., Delannoy V., et al. (2010). Openvibe: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence 19, 35–53. 10.1162/pres.19.1.35 DOI
Shannon C. E. (1949). A mathematical theory of communication, in Bell System Technical Journal, Vol. 27 of 3 (American Telephone and Telegraph Company), 379–423.
Shenoy P., Krauledat M., Blankertz B., Rao R. P. N., Müller K.-R. (2006). Towards adaptive classification for BCI. J. Neural Eng. 3, R13–R23. 10.1088/1741-2560/3/1/R02 PubMed DOI
Škola F., Liarokapis F. (2018). Embodied VR environment facilitates motor imagery brain–computer interface training. Comput. Graph. 75, 59–71. 10.1016/j.cag.2018.05.024 DOI
Slater M., Perez-Marcos D., Ehrsson H. H., Sanchez-Vives M. V. (2009). Inducing illusory ownership of a virtual body. Front. Neurosci. 3, 214–220. 10.3389/neuro.01.029.2009 PubMed DOI PMC
Sollfrank T., Hart D., Goodsell R., Foster J., Tan T. (2015). 3d visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front. Hum. Neurosci. 9:463. 10.3389/fnhum.2015.00463 PubMed DOI PMC
Sollfrank T., Ramsay A., Perdikis S., Williamson J., Murray-Smith R., Leeb R., et al. . (2016). The effect of multimodal and enriched feedback on SMR-BCI performance. Clin. Neurophysiol. 127, 490–498. 10.1016/j.clinph.2015.06.004 PubMed DOI
Sweller J., van Merrienboer J. J. G., Paas F. G. W. C. (1998). Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–296. 10.1023/A:1022193728205 DOI
Talukdar U., Hazarika S. M., Gan J. Q. (2019). Motor imagery and mental fatigue: inter-relationship and EEG based estimation. J. Comput. Neurosci. 46, 55–76. 10.1007/s10827-018-0701-0 PubMed DOI
Tsakiris M., Haggard P., Franck N., Mainy N., Sirigu A. (2005). A specific role for efferent information in self-recognition. Cognition 96, 215–231. 10.1016/j.cognition.2004.08.002 PubMed DOI
Vlek R., van Acken J.-P., Beursken E., Roijendijk L., Haselager P. (2014). BCI and a user's judgment of agency, in Brain-Computer-Interfaces in their ethical, social and cultural contexts, The International Library of Ethics, Law and Technology, eds Grübler G., Hildt E. (Dordrecht: Springer Netherlands; ), 193–202.
Vollmeyer R., Rheinberg F. (1998). Motivationale Einflüsse auf Erwerb und Anwendung von Wissen in einem computersimulierten System. [Motivational influences on the acquisition and application of knowledge in a simulated system.]. Ger. J. Educ. Psychol. 12, 11–23.
von Holst E., Mittelstaedt H. (1950). Das Reafferenzprinzip. Naturwissenschaften 37, 464–476. 10.1007/BF00622503 DOI
Vorderer P., Hartmann T., Klimmt C. (2003). Explaining the enjoyment of playing video games: the role of competition, in Proceedings of the Second International Conference on Entertainment Computing, ICEC '03 (Pittsburgh, PA: Carnegie Mellon University; ), 1–9.
Vourvopoulos A., Ferreira A., Badia S. B. I. (2016). NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback, in 3rd International Conference on Physiological Computing Systems (SCITEPRESS - Science and Technology Publications: ) (Lisbon), 43–53.
Vourvopoulos A., Pardo O. M., Lefebvre S., Neureither M., Saldana D., Jahng E., et al. . (2019). Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients. Front. Hum. Neurosci. 13:210. 10.3389/fnhum.2019.00210 PubMed DOI PMC
Winkler I., Brandl S., Horn F., Waldburger E., Allefeld C., Tangermann M. (2014). Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 11:035013. 10.1088/1741-2560/11/3/035013 PubMed DOI
Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M. (2002). Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791. 10.1016/S1388-2457(02)00057-3 PubMed DOI
Yao L., Meng J., Sheng X., Zhang D., Zhu X. (2014). A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion. J. Neural Eng. 12:016005. 10.1088/1741-2560/12/1/016005 PubMed DOI