Quantitative Proteome Profiling of Coxiella burnetii Reveals Major Metabolic and Stress Differences Under Axenic and Cell Culture Cultivation

. 2019 ; 10 () : 2022. [epub] 20190918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31620097

Coxiella burnetii is the causative agent of the zoonotic disease Q fever. To date, the lipopolysaccharide (LPS) is the only defined and characterized virulence determinant of C. burnetii. In this study, proteome profiles of C. burnetii Nine Mile phase I (RSA 493, NMI) and its isogenic Nine Mile phase II (RSA 439 NMII) isolate with a deep rough LPS were compared on L-929 mouse fibroblasts and in complex (ACCM-2), and defined (ACCM-D) media. Whole proteome extracts were analyzed using a label-free quantification approach. Between 659 and 1,046 C. burnetii proteins of the 2,132 annotated coding sequences (CDS) were identified in any particular experiment. Proteome profiles clustered according to the cultivation conditions used, indicating different regulation patterns. NMI proteome profiles compared to NMII in ACCM-D indicate transition from an exponential to a stationary phase. The levels of regulatory proteins such as RpoS, CsrA2, UspA1, and UspA2 were increased. Comparison of the oxidative stress response of NMI and NMII indicated that ACCM-2 represents a high oxidative stress environment. Expression of peroxidases, superoxide dismutases, as well as thioredoxins was increased for NMI. In contrast, in ACCM-D, only osmoregulation seems to be necessary. Proteome profiles of NMII do not differ and indicate that both axenic media represent similar oxidative stress environments. Deep rough LPS causes changes of the outer membrane stability and fluidity. This might be one reason for the observed differences. Proteins associated with the T4SS and Sec translocon as well as several effector proteins were detectable under all three conditions. Interestingly, none of these putatively secreted proteins are upregulated in ACCM-2 compared to ACCM-D, and L-929 mouse fibroblasts. Curiously, a higher similarity of proteomic patterns (overlapping up- and downregulated proteins) of ACCM-D and bacteria grown in cell culture was observed. Particularly, the proteins involved in a better adaptation or homeostasis in response to the harsh environment of the parasitophorous vacuole were demonstrated for NMI. This semi-quantitative proteomic analysis of C. burnetii compared axenically grown bacteria to those propagated in cell culture.

Zobrazit více v PubMed

Andoh M., Russell-Lodrigue K. E., Zhang G., Samuel J. E. (2005). Comparative virulence of phase I and II Coxiella burnetii in immunodeficient mice. Ann. N. Y. Acad. Sci. 1063, 167–170. 10.1196/annals.1355.026 PubMed DOI

Angelakis E., Raoult D. (2010). Q fever. Vet. Microbiol. 140, 297–309. 10.1016/j.vetmic.2009.07.016 PubMed DOI

Beare P. A., Jeffrey B. M., Long C. M., Martens C. M., Heinzen R. A. (2018). Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog. 14:e1006922. 10.1371/journal.ppat.1006922 PubMed DOI PMC

Beare P. A., Sandoz K. M., Larson C. L., Howe D., Kronmiller B., Heinzen R. A. (2014). Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J. Bacteriol. 196, 1925–1940. 10.1128/JB.01532-14 PubMed DOI PMC

Boarbi S., Mori M., Rousset E., Sidi-Boumedine K., Van Esbroeck M., Fretin D. (2014). Prevalence and molecular typing of Coxiella burnetii in bulk tank milk in belgian dairy goats, 2009–2013. Vet. Microbiol. 170, 117–124. 10.1016/j.vetmic.2014.01.025 PubMed DOI

Brennan R. E., Kiss K., Baalman R., Samuel J. E. (2015). Cloning, expression, and characterization of a Coxiella burnetii Cu/Zn superoxide dismutase. BMC Microbiol. 15. 10.1186/s12866-015-0430-8 PubMed DOI PMC

Briggs H. L., Pul N., Seshadri R., Wilson M. J., Tersteeg C., Russell-Lodrigue K. E., et al. . (2008). Limited role for iron regulation in Coxiella burnetii pathogenesis. Infect. Immun. 76, 2189–2201. 10.1128/IAI.01609-07 PubMed DOI PMC

Chen C., Banga S., Mertens K., Weber M. M., Gorbaslieva I., Tan Y., et al. . (2010). Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl. Acad. Sci. U.S.A. 107, 21755–21760. 10.1073/pnas.1010485107 PubMed DOI PMC

Chmielewski T., Sidi-Boumedine K., Duquesne V., Podsiadly E., Thiéry R., Tylewska-Wierzbanowska S. (2009). Molecular epidemiology of Q fever in Poland. Pol. J. Microbiol. 58, 9–13. PubMed

Coleman S. A., Fischer E. R., Cockrell D. C., Voth D. E., Howe D., Mead D. J., et al. . (2007). Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect. Immun. 75, 290–298. 10.1128/IAI.00883-06 PubMed DOI PMC

Coleman S. A., Fischer E. R., Howe D., Mead D. J., Heinzen R. A. (2004). Temporal analysis of Coxiella burnetii morphological differentiation. J. Bacteriol. 186, 7344–7352. 10.1128/JB.186.21.7344-7352.2004 PubMed DOI PMC

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 13, 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. 10.1021/pr101065j PubMed DOI

Flores-Ramirez G., Jankovicova B., Bilkova Z., Miernyk J. A., Skultety L. (2014). Identification of Coxiella burnetii surface-exposed and cell envelope associated proteins using a combined bioinformatics plus proteomics strategy. Proteomics 14, 1868–1881. 10.1002/pmic.201300338 PubMed DOI

Frangoulidis D., Walter M. C., Antwerpen M., Zimmermann P., Janowetz B., Alex M., et al. . (2014). Molecular analysis of Coxiella burnetii in Germany reveals evolution of unique clonal clusters. Int. J. Med. Microbiol. 304, 868–876. 10.1016/j.ijmm.2014.06.011 PubMed DOI

Frimmelová M., Toman R., Pompach P., Škultéty L. (2016). Modifications in the glycerophospholipid composition between the Coxiella burnetii phase I and phase II cells suggest an association with phase variation of the bacterium. Acta Virol. 60, 27–33. 10.4149/av_2016_01_27 PubMed DOI

Ftácek P., Skultéty L., Toman R. (2000). Phase variation of Coxiella burnetii strain priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J. Endotoxin Res. 6, 369–376. 10.1177/09680519000060050701 PubMed DOI

Graham J. G., MacDonald L. J., Hussain S. K., Sharma U. M., Kurten R. C., Voth D. E. (2013). Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages. Cell. Microbiol. 15, 1012–1025. 10.1111/cmi.12096 PubMed DOI PMC

Hackstadt T., Peacock M. G., Hitchcock P. J., Cole R. L. (1985). Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infect. Immun. 48, 359–365. PubMed PMC

Heinzen R. A., Frazier M. E., Mallavia L. P. (1992). Coxiella burnetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia coli. Infect. Immun. 60, 3814–3823. PubMed PMC

Hendrix L. R., Samuel J. E., Mallavia L. P. (1991). Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J. Gen. Microbiol. 137, 269–276. 10.1099/00221287-137-2-269 PubMed DOI

Hicks L. D., Raghavan R., Battisti J. M., Minnick M. F. (2010). A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J. Bacteriol. 192, 2077–2084. 10.1128/JB.01324-09 PubMed DOI PMC

Hill J., Samuel J. E. (2011). Coxiella burnetii acid phosphatase inhibits the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect. Immun. 79, 414–420. 10.1128/IAI.01011-10 PubMed DOI PMC

Hoover T. A., Culp D. W., Vodkin M. H., Williams J. C., Thompson H. A. (2002). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect. Immun. 70, 6726–6733. 10.1128/IAI.70.12.6726-2733.2002 PubMed DOI PMC

Howe D., Shannon J. G., Winfree S., Dorward D. W., Heinzen R. A. (2010). Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect. Immun. 78, 3465–3474. 10.1128/IAI.00406-10 PubMed DOI PMC

Ihnatko R., Shaw E., Toman R. (2012). Proteome of Coxiella burnetii. Adv. Exp. Med. Biol. 984, 105–130. 10.1007/978-94-007-4315-1_6 PubMed DOI

Klee S. R., Tyczka J., Ellerbrok H., Franz T., Linke S., Baljer G., et al. . (2006). Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 6:2. 10.1186/1471-2180-6-2 PubMed DOI PMC

Kuley R., Bossers-deVries R., Smith H. E., Smits M. A., Roest H. I. J., Bossers A. (2015a). Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models. BMC Genom. 16:953. 10.1186/s12864-015-2143-7 PubMed DOI PMC

Kuley R., Smith H. E., Frangoulidis D., Smits M. A., Jan Roest H. I., Bossers A. (2015b). Cell-free propagation of Coxiella burnetii does not affect its relative virulence. PLoS ONE. 10:e0121661 10.1371/journal.pone.0121661 PubMed DOI PMC

Larson C. L., Beare P. A., Howe D., Heinzen R. A. (2013). Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, E4770–E4779. 10.1073/pnas.1309195110 PubMed DOI PMC

Latomanski E. A., Newton P., Khoo C. A., Newton H. J. (2016). The effector Cig57 hijacks FCHO-mediated vesicular trafficking to facilitate intracellular replication of Coxiella burnetii. PLoS Pathog. 12:e1006101. 10.1371/journal.ppat.1006101 PubMed DOI PMC

Luedtke B. E., Mahapatra S., Lutter E. I., Shaw E. I. (2017). The Coxiella burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner. Pathog. Dis. 75, 1–17. 10.1093/femspd/ftx047 PubMed DOI PMC

Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. (1995). Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 16, 45–55. 10.1111/j.1365-2958.1995.tb02390.x PubMed DOI

Mansilla Pareja M. E., Bongiovanni A., Lafont F., Colombo M. I. (2017). Alterations of the Coxiella burnetii replicative vacuole membrane integrity and interplay with the autophagy pathway. Front. Cell. Infect. Microbiol. 7:112. 10.3389/fcimb.2017.00112 PubMed DOI PMC

Martinez E., Allombert J., Cantet F., Lakhani A., Yandrapalli N., Neyret A., et al. . (2016). Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl. Acad. Sci. U.S.A. 113, E3260–E3269. 10.1073/pnas.1522811113 PubMed DOI PMC

Maurin M., Raoult D. (1999). Q fever. Clin. Microbiol. Rev. 12, 518–553. 10.1128/CMR.12.4.518 PubMed DOI PMC

McCaul T. F., Banerjee-Bhatnagar N., Williams J. C. (1991). Antigenic differences between Coxiella burnetii cells revealed by postembedding immunoelectron microscopy and immunoblotting. Infect. Immun. 59, 3243–3253. PubMed PMC

McDonough J. A., Newton H. J., Roy C. R. (2012). Coxiella burnetii secretion systems. Adv. Exp. Med. Biol. 984, 171–197. 10.1007/978-94-007-4315-1_9 PubMed DOI

McPhee J. B., Lewenza S., Hancock R. E. W. (2003). Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217. 10.1046/j.1365-2958.2003.03673.x PubMed DOI

Megger D. A., Bracht T., Meyer H. E., Sitek B. (2013). Label-free quantification in clinical proteomics. Biochim. Biophys. Acta BBA Proteins Proteomics 1834, 1581–1590. 10.1016/j.bbapap.2013.04.001 PubMed DOI

Mertens K., Lantsheer L., Ennis D. G., Samuel J. E. (2008). Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol. Microbiol. 69, 1411–1426. 10.1111/j.1365-2958.2008.06373.x PubMed DOI

Mertens K., Samuel J. E. (2012). Defense mechanisms against oxidative stress in Coxiella burnetii: adaptation to a unique intracellular niche. Adv. Exp. Med. Biol. 984, 39–63. 10.1007/978-94-007-4315-1_3 PubMed DOI

Mi H., Muruganujan A., Thomas P. D. (2013). PANTHER in 2013: Modeling the evolution of gene function, and other gene attributesin the context of phylogenetic trees. Nucleic Acids Res. 41, D377–D386. 10.1093/nar/gks1118 PubMed DOI PMC

Millar J. A., Beare P. A., Moses A. S., Martens C. A., Heinzen R. A., Raghavan R. (2017). Whole-genome sequence of Coxiella burnetii nine mile RSA439 (Phase II, Clone 4), a laboratory workhorse strain. Genome Announc. 5:e00471–17. 10.1128/genomeA.00471-17 PubMed DOI PMC

Moffatt J. H., Newton P., Newton H. J. (2015). Coxiella burnetii: turning hostility into a home. Cell. Microbiol. 17, 621–631. 10.1111/cmi.12432 PubMed DOI

Moormeier D. E., Sandoz K. M., Beare P. A., Sturdevant D. E., Nair V., Cockrell D. C., et al. . (2019). Coxiella burnetii RpoS regulates genes involved in morphological differentiation and intracellular growth. J. Bacteriol. 201:e00009–19. 10.1128/JB.00009-19 PubMed DOI PMC

Nikaido H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656. 10.1128/MMBR.67.4.593-656.2003 PubMed DOI PMC

Omsland A., Beare P. A., Hill J., Cockrell D. C., Howe D., Hansen B., et al. . (2011). Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl. Environ. Microbiol. 77, 3720–3725. 10.1128/AEM.02826-10 PubMed DOI PMC

Omsland A., Cockrell D. C., Howe D., Fischer E. R., Virtaneva K., Sturdevant D. E., et al. . (2009). Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl. Acad. Sci. U.S.A. 106, 4430–4434. 10.1073/pnas.0812074106 PubMed DOI PMC

Papadioti A., De Bock P.-J., Vranakis I., Tselentis Y., Gevaert K., Psaroulaki A., et al. . (2012). Study of the whole cell lysate of two Coxiella burnetii strains using N-terminomics. J. Proteome Res. 11, 3150–3159. 10.1021/pr201175m PubMed DOI

Papadioti A., Markoutsa S., Vranakis I., Tselentis Y., Karas M., Psaroulaki A., et al. . (2011). A proteomic approach to investigate the differential antigenic profile of two Coxiella burnetii strains. J. Proteomics 74, 1150–1159. 10.1016/j.jprot.2011.04.016 PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC

Pham H. T., Nhiep N. T. H., Vu T. N. M., Huynh T. N., Zhu Y., Huynh A. L. D., et al. (2018). Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genet. 14:e1007574 10.1371/journal.pgen.1007574 PubMed DOI PMC

Qiu J., Luo Z.-Q. (2017). Legionella and coxiella effectors: strength in diversity and activity. Nat. Rev. Microbiol. 15, 591–605. 10.1038/nrmicro.2017.67 PubMed DOI

Roest H. I. J., Ruuls R. C., Tilburg J. J. H. C., Nabuurs-Franssen M. H., Klaassen C. H. W., Vellema P., et al. . (2011). Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg. Infect. Dis. 17, 668–675. 10.3201/eid1704.101562 PubMed DOI PMC

Romeo T., Vakulskas C. A., Babitzke P. (2013). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ. Microbiol. 15, 313–324. 10.1111/j.1462-2920.2012.02794.x PubMed DOI PMC

Russell-Lodrigue K. E., Andoh M., Poels M. W. J., Shive H. R., Weeks B. R., Zhang G. Q., et al. . (2009). Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect. Immun. 77, 5640–5650. 10.1128/IAI.00851-09 PubMed DOI PMC

Samoilis G., Aivaliotis M., Vranakis I., Papadioti A., Tselentis Y., Tsiotis G., et al. . (2010). Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii. J. Proteome Res. 9, 1619–1626. 10.1021/pr900605q PubMed DOI

Samoilis G., Psaroulaki A., Vougas K., Tselentis Y., Tsiotis G. (2007). Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques. J. Proteome Res. 6, 3032–3041. 10.1021/pr070077n PubMed DOI

Sanchez S. E., Vallejo-Esquerra E., Omsland A. (2018). Use of axenic culture tools to study Coxiella burnetii. Curr. Protoc. Microbiol. 50:e52. 10.1002/cpmc.52 PubMed DOI

Sandoz K. M., Beare P. A., Cockrell D. C., Heinzen R. A. (2016a). Complementation of arginine auxotrophy for genetic transformation of Coxiella burnetii by use of a defined axenic medium. Appl. Environ. Microbiol. 82, 3042–3051. 10.1128/AEM.00261-16 PubMed DOI PMC

Sandoz K. M., Popham D. L., Beare P. A., Sturdevant D. E., Hansen B., Nair V., et al. . (2016b). Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS ONE 11:e0149957. 10.1371/journal.pone.0149957 PubMed DOI PMC

Sandoz K. M., Sturdevant D. E., Hansen B., Heinzen R. A. (2014). Developmental transitions of Coxiella burnetii grown in axenic media. J. Microbiol. Methods 96, 104–110. 10.1016/j.mimet.2013.11.010 PubMed DOI PMC

Sangpuii L., Dixit S. K., Kumawat M., Apoorva S., Kumar M., Kappala D., et al. . (2018). Comparative roles of clpA and clpB in the survival of S. typhimurium under stress and virulence in poultry. Sci. Rep. 8:4481. 10.1038/s41598-018-22670-6 PubMed DOI PMC

Schäfer W., Eckart R. A., Schmid B., Cagköylü H., Hof K., Muller Y. A., et al. . (2017). Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-α1. Cell. Microbiol. 19. 10.1111/cmi.12634 PubMed DOI

Seshadri R., Hendrix L. R., Samuel J. E. (1999). Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect. Immun. 67, 6026–6033. PubMed PMC

Seshadri R., Paulsen I. T., Eisen J. A., Read T. D., Nelson K. E., Nelson W. C., et al. . (2003). Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. U.S.A. 100, 5455–5460. 10.1073/pnas.0931379100 PubMed DOI PMC

Siemsen D. W., Kirpotina L. N., Jutila M. A., Quinn M. T. (2009). Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect. 11, 671–679. 10.1016/j.micinf.2009.04.005 PubMed DOI PMC

Skultety L., Hajduch M., Flores-Ramirez G., Miernyk J. A., Ciampor F., Toman R., et al. . (2011). Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J. Proteomics 74, 1974–1984. 10.1016/j.jprot.2011.05.017 PubMed DOI

Skultety L., Hernychova L., Toman R., Hubalek M., Slaba K., Zechovska J., et al. . (2005). Coxiella burnetii whole cell lysate protein identification by mass spectrometry and tandem mass spectrometry. Ann. N. Y. Acad. Sci. 1063, 115–122. 10.1196/annals.1355.019 PubMed DOI

Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., et al. . (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. 10.1016/0003-2697(85)90442-7 PubMed DOI

Thomas P. D. (2003). PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141. 10.1101/gr.772403 PubMed DOI PMC

Toman R., Skultéty L. (1996). Structural study on a lipopolysaccharide from Coxiella burnetii strain nine mile in avirulent phase II. Carbohydr. Res. 283, 175–185. 10.1016/0008-6215(96)87610-5 PubMed DOI

Ueta M., Yoshida H., Wada C., Baba T., Mori H., Wada A. (2005). Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells Devoted Mol. Cell. Mech. 10, 1103–1112. 10.1111/j.1365-2443.2005.00903.x PubMed DOI

van Schaik E. J., Chen C., Mertens K., Weber M. M., Samuel J. E. (2013). Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11, 561–573. 10.1038/nrmicro3049 PubMed DOI PMC

Varghees S., Kiss K., Frans G., Braha O., Samuel J. E. (2002). Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii. Infect. Immun. 70, 6741–6750. 10.1128/IAI.70.12.6741-6750.2002 PubMed DOI PMC

Voth D. E., Beare P. A., Howe D., Sharma U. M., Samoilis G., Cockrell D. C., et al. . (2011). The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J. Bacteriol. 193, 1493–1503. 10.1128/JB.01359-10 PubMed DOI PMC

Voth D. E., Heinzen R. A. (2007). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell. Microbiol. 9, 829–840. 10.1111/j.1462-5822.2007.00901.x PubMed DOI

Wang Z., Wang J., Ren G., Li Y., Wang X. (2015). Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13, 3325–3339. 10.3390/md13063325 PubMed DOI PMC

Weber M. M., Faris R., van Schaik E. J., Samuel J. E. (2018). Identification and characterization of arginine finger-like motifs, and endosome–lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA. Microbes Infect. 20, 302–307. 10.1016/j.micinf.2017.12.013 PubMed DOI PMC

Wiśniewski J. R., Zougman A., Mann M. (2009). Combination of FASP and stagetip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678. 10.1021/pr900748n PubMed DOI

Yu Y.-Q., Gilar M., Lee P. J., Bouvier E. S. P., Gebler J. C. (2003). Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 75, 6023–6028. 10.1021/ac0346196 PubMed DOI

Zamboni D. S., McGrath S., Rabinovitch M., Roy C. R. (2003). Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 49, 965–976. 10.1046/j.1365-2958.2003.03626.x PubMed DOI

Zhang G., Meredith T. C., Kahne D. (2013). On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 16, 779–785. 10.1016/j.mib.2013.09.007 PubMed DOI PMC

Zhang G., Russell-Lodrigue K. E., Andoh M., Zhang Y., Hendrix L. R., Samuel J. E. (2007). Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J. Immunol. Baltim. Md. 179, 8372–8380. 10.4049/jimmunol.179.12.8372 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis

. 2020 Jul 08 ; 20 (1) : 200. [epub] 20200708

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...