Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000845
NutRisk Centre
PubMed
31627372
PubMed Central
PMC6826637
DOI
10.3390/antiox8100492
PII: antiox8100492
Knihovny.cz E-resources
- Keywords
- anti-cancer compounds, antioxidative system, oxidative stress, phytochemicals, polyphenols,
- Publication type
- Journal Article MeSH
Plants have been the basis of traditional medicine since the dawn of civilizations. Different plant parts possess various phytochemicals, playing important roles in preventing and curing diseases. Scientists, through extensive experimental studies, are playing an important part in establishing the use of phytochemicals in medicine. However, there are still a large number of medicinal plants which need to be studied for their phytochemical profile. In this study, the objective was to isolate phytochemicals from bark of Bauhinia variegata L. and to study them for their antioxidant and cytotoxic activities. The bark was extracted with methanol, followed by column chromatography and thus isolating kaempferol, stigmasterol, protocatechuic acid-methyl ester (PCA-ME) and protocatechuic acid (PCA). 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 2, 2'-diphenyl-1-picrylhydrazyl radical (DPPH) radical scavenging assays were utilized for assessment of antioxidant activity, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) dye reduction assay was used to determine cytotoxic activity against C-6 glioma rat brain, MCF-7 breast cancer, and HCT-15 colon cancer cell lines. The compounds were found to have significant antioxidant and cytotoxic activity. Since there is a considerable increase in characterizing novel chemical compounds from plant parts, the present study might be helpful for chemotaxonomic determinations, for understanding of medicinal properties as well as for the quality assessment of herbal supplements containing B. variegata bark, thus establishing its use in traditional medicine.
Department of Agriculture Food and Environment University of Pisa 56124 Pisa Italy
Department of Biophysics Panjab University Chandigarh 160014 India
Department of Botanical and Environmental Sciences Guru Nanak Dev University Amritsar 143005 India
Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar 143005 India
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University Hangzhou 311300 China
See more in PubMed
Kawata K., Yokoo H., Shimazaki R., Okabe S. Classification of heavy-metal toxicity by human DNA microarray analysis. Environ. Sci. Technol. 2007;41:3769–3774. doi: 10.1021/es062717d. PubMed DOI
Rehman K., Fatima F., Waheed I., Akash M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018;119:157–184. doi: 10.1002/jcb.26234. PubMed DOI
Sharma A., Kumar V., Thukral A., Bhardwaj R. Responses of Plants to Pesticide Toxicity: An Overview. Planta Daninha. 2019;37:e019184291. doi: 10.1590/s0100-83582019370100065. DOI
De Gruijl F.R. Photocarcinogenesis: UVA vs. UVB radiation. Ski. Pharmacol. Physiol. 2002;15:316–320. doi: 10.1159/000064535. PubMed DOI
Ruiz-Ramos R., Lopez-Carrillo L., Rios-Perez A.D., De Vizcaya-Ruíz A., Cebrian M.E. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2009;674:109–115. doi: 10.1016/j.mrgentox.2008.09.021. PubMed DOI
Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2) Apoptosis. 2012;17:852–870. doi: 10.1007/s10495-012-0705-6. PubMed DOI
Barzilai A., Yamamoto K.-I. DNA damage responses to oxidative stress. DNA Repair. 2004;3:1109–1115. doi: 10.1016/j.dnarep.2004.03.002. PubMed DOI
Gupta S.C., Hevia D., Patchva S., Park B., Koh W., Aggarwal B.B. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 2012;16:1295–1322. doi: 10.1089/ars.2011.4414. PubMed DOI PMC
Dikshit R., Gupta P.C., Ramasundarahettige C., Gajalakshmi V., Aleksandrowicz L., Badwe R., Kumar R., Roy S., Suraweera W., Bray F., et al. Cancer mortality in India: A nationally representative survey. Lancet (Lond. Engl.) 2012;379:1807–1816. doi: 10.1016/S0140-6736(12)60358-4. PubMed DOI
Stewart B.W., Wild C.P. World Cancer Report 2014. World Health Organization; Geneva, Switzerland: 2014.
Ramirez-Mares M.V., Chandra S., de Mejia E.G. In vitro chemopreventive activity of Camellia sinensis, Ilex paraguariensis and Ardisia compressa tea extracts and selected polyphenols. Mutat. Res. 2004;554:53–65. doi: 10.1016/j.mrfmmm.2004.03.002. PubMed DOI
Nemeikaite-Ceniene A., Imbrasaite A., Sergediene E., Cenas N. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: Role of potential of phenoxyl radical/phenol redox couple. Arch. Biochem. Biophys. 2005;441:182–190. doi: 10.1016/j.abb.2005.07.002. PubMed DOI
Aravindaram K., Yang N.S. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 2010;76:1103–1117. doi: 10.1055/s-0030-1249859. PubMed DOI
Bahadoran Z., Golzarand M., Mirmiran P., Saadati N., Azizi F. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2013;26(Suppl. 1):145–153. doi: 10.1111/jhn.12048. PubMed DOI
Fresco P., Borges F., Diniz C., Marques M.P. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006;26:747–766. doi: 10.1002/med.20060. PubMed DOI
Anand P., Kunnumakkara A.B., Sundaram C., Harikumar K.B., Tharakan S.T., Lai O.S., Sung B., Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008;25:2097–2116. doi: 10.1007/s11095-008-9661-9. PubMed DOI PMC
Rivera-Mondragon A., Bijttebier S., Tuenter E., Custers D., Ortiz O.O., Pieters L., Caballero-George C., Apers S., Foubert K. Phytochemical characterization and comparative studies of four Cecropia species collected in Panama using multivariate data analysis. Sci. Rep. 2019;9:1763. doi: 10.1038/s41598-018-38334-4. PubMed DOI PMC
Fent K., Weston A.A., Caminada D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006;76:122–159. doi: 10.1016/j.aquatox.2005.09.009. PubMed DOI
Huang D. Dietary Antioxidants and Health Promotion. Antioxidants. 2018;7:9. doi: 10.3390/antiox7010009. PubMed DOI PMC
San Marcos Growers Bauhinia blakeana (Hong Kong Orchid Tree) [(accessed on 7 October 2019)]; Available online: https://www.smgrowers.com/products/plants/plantdisplay.asp?plant_id=234.
Silva K.L.D., Cechinel Filho V. Plants of the genus Bauhinia: Chemical composition and pharmacological potential. Química Nova. 2002;25:449–454. doi: 10.1590/S0100-40422002000300018. DOI
Cavalcanti K., Favoretto R. Bauhinia forficata Link. In: Amaral A., Simões E., Ferreira K., Fiocruz R.D.J., editors. Coletânea Científica de Plantas de Uso Medicinal. Fiocruz; Rio de Janeiro, Brazil: 2005. pp. 1–17.
Modh K.M., Parmar P.T., Panigrahi B., Anand I.S., Patel C.N. Pharmacognostical and Phytochemical Evaluation of Leaves of Bauhinia variegata Linn. Pharmacogn. J. 2011;3:45–49. doi: 10.5530/pj.2011.24.9. DOI
Bodakhe S.H., Alpana R. Hepatoprotective properties of Bauhinia variegata extract. Pharm. J. Jpn. 2007;127:1503–1507. doi: 10.1248/yakushi.127.1503. PubMed DOI
Rajkapoor B., Jayakar B., Murugesh N. Antitumour activity of Bauhinia variegata on Dalton’s ascitic lymphoma. J. Ethnopharmacol. 2003;89:107–109. doi: 10.1016/S0378-8741(03)00264-2. PubMed DOI
Rajkapoor B., Jayakar B., Murugesh N. Antitumour activity of Bauhinia variegata against Ehrlich ascites carcinoma induced mice. Pharm. Biol. 2003;41:604–607. doi: 10.1080/13880200390501947. DOI
Shahana S., Nikalje A.P.G. A Brief Review on Bauhinia variegata: Phytochemistry, Antidiabetic and Antioxidant potential. Am. J. Pharmtech Res. 2017;7:186–197.
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. DOI
Igarashi M., Miyazawa T. The growth inhibitory effect of conjugated linoleic acid on a human hepatoma cell line, HepG2, is induced by a change in fatty acid metabolism, but not the facilitation of lipid peroxidation in the cells. Biochim. Biophys. Acta. 2001;1530:162–171. doi: 10.1016/S1388-1981(00)00180-3. PubMed DOI
Xiao Z., Wu H., Wu T., Shi H., Hang B., Aisa H. Kaempferol and quercetin flavonoids from Rosa rugosa. Chem. Nat. Compd. 2006;42:736–737. doi: 10.1007/s10600-006-0267-3. DOI
Habib M., Nikkon F., Rahman M., Haque Z., Karim M. Isolation of stigmasterol and ß-sitosterol from methanolic extract of root bark of Calotropis gigantean (Linn.) Pak. J. Biol. Sci. 2007;10:4174–4176. PubMed
Moghaddam F.M., Farimani M.M., Salahvarzi S., Amin G. Chemical Constituents of Dichloromethane Extract of Cultivated Satureja khuzistanica. Evid. Based Complement. Altern. Med. eCAM. 2007;4:95–98. doi: 10.1093/ecam/nel065. PubMed DOI PMC
Jamal A., Ahmad W.Y.W., Din L.B. A chemical study on Phyllanthus columnaris. Eur. J. Sci. Res. 2009;28:76–81.
He D., Gu D., Huang Y., Ayupbek A., Yang Y., Aisa H.A., Ito Y. Separation and Purification of Phenolic Acids and Myricetin from Black Currant by High Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2009;32:3077–3088. doi: 10.1080/10826070903320756. PubMed DOI PMC
Desai M.C., Chackalamannil S. Rediscovering the role of natural products in drug discovery. Curr. Opin. Drug Discov. Dev. 2008;11:436–437. PubMed
Lam K.S. New aspects of natural products in drug discovery. Trends Microbiol. 2007;15:279–289. doi: 10.1016/j.tim.2007.04.001. PubMed DOI
Mali R.G., Mahajan S.G., Mehta A.A. Rakta Kanchan (Bauhinia variegata): Chemistry, traditional and medicinal uses-a review. Pharmacogn. Rev. 2007;1:314.
Wang J., Fang X., Ge L., Cao F., Zhao L., Wang Z., Xiao W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE. 2018;13:e0197563. doi: 10.1371/journal.pone.0197563. PubMed DOI PMC
Van Acker S.A., van den Berg D.J., Tromp M.N., Griffioen D.H., van Bennekom W.P., van der Vijgh W.J., Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 1996;20:331–342. doi: 10.1016/0891-5849(95)02047-0. PubMed DOI
Rice-Evans C. Flavonoid antioxidants. Curr. Med. Chem. 2001;8:797–807. doi: 10.2174/0929867013373011. PubMed DOI
Kampkotter A., Nkwonkam C.G., Zurawski R.F., Timpel C., Chovolou Y., Watjen W., Kahl R. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology. 2007;234:113–123. doi: 10.1016/j.tox.2007.02.006. PubMed DOI
M Calderon-Montano J., Burgos-Morón E., Pérez-Guerrero C., López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011;11:298–344. doi: 10.2174/138955711795305335. PubMed DOI
Kanimozhi D., Bai V. Evaluation of Phytochemical antioxidant antimicrobial activity determination of bioactive components of ethanolic extract of aerial and underground parts of Cynodon dactylon L. Int. J. Sci. Res. Rev. 2012;1:33–48.
Shanthakumar B., Sathish M., Suresh A.J. In Vitro Anti Oxidant Activity of Extracts and Stigmasterol from Leaves of Clerodendrum inerme Linn. Res. J. Pharm. Biol. Chem. Sci. 2013;4:1411–1418.
Kakkar S., Bais S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014;2014 doi: 10.1155/2014/952943. PubMed DOI PMC
Saito S., Kawabata J. DPPH (=2,2-diphenyl-1-picrylhydrazyl) radical-scavenging reaction of protocatechuic acid (=3,4-dihydroxybenzoic acid): Difference in reactivity between acids and their esters. Helv. Chim. Acta. 2006;89:1395–1407. doi: 10.1002/hlca.200690139. DOI
Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science (New York N. Y.) 1968;161:370–371. doi: 10.1126/science.161.3839.370. PubMed DOI
Soule H.D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 1973;51:1409–1416. doi: 10.1093/jnci/51.5.1409. PubMed DOI
Diantini A., Subarnas A., Lestari K., Halimah E., Susilawati Y., Supriyatna S., Julaeha E., Achmad T.H., Suradji E.W., Yamazaki C., et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol. Lett. 2012;3:1069–1072. doi: 10.3892/ol.2012.596. PubMed DOI PMC
Hong J.T., Yen J.H., Wang L., Lo Y.H., Chen Z.T., Wu M.J. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol. Appl. Pharmacol. 2009;237:59–68. doi: 10.1016/j.taap.2009.02.014. PubMed DOI
Filomeni G., Desideri E., Cardaci S., Graziani I., Piccirillo S., Rotilio G., Ciriolo M.R. Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy. 2010;6:202–216. doi: 10.4161/auto.6.2.10971. PubMed DOI
Bigovic D., Savikin K., Jankovic T., Menkovic N., Zdunic G., Stanojkovic T., Djuric Z. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts. Nat. Prod. Commun. 2011;6:819–822. doi: 10.1177/1934578X1100600617. PubMed DOI
Luo H., Rankin G.O., Li Z., Depriest L., Chen Y.C. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011;128:513–519. doi: 10.1016/j.foodchem.2011.03.073. PubMed DOI PMC
Yang J.H., Kondratyuk T.P., Jermihov K.C., Marler L.E., Qiu X., Choi Y., Cao H., Yu R., Sturdy M., Huang R., et al. Bioactive compounds from the fern Lepisorus contortus. J. Nat. Prod. 2011;74:129–136. doi: 10.1021/np100373f. PubMed DOI PMC
Kim S.H., Hwang K.A., Choi K.C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem. 2016;28:70–82. doi: 10.1016/j.jnutbio.2015.09.027. PubMed DOI
Rajendran P., Rengarajan T., Nandakumar N., Palaniswami R., Nishigaki Y., Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem. 2014;86:103–112. doi: 10.1016/j.ejmech.2014.08.011. PubMed DOI
Imran M., Salehi B., Sharifi-Rad J., Aslam Gondal T., Saeed F., Imran A., Shahbaz M., Tsouh Fokou P.V., Umair Arshad M., Khan H., et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules. 2019;24:2277. doi: 10.3390/molecules24122277. PubMed DOI PMC
Malikova J., Swaczynova J., Kolar Z., Strnad M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry. 2008;69:418–426. doi: 10.1016/j.phytochem.2007.07.028. PubMed DOI
Ali H., Dixit S., Ali D., Alqahtani S.M., Alkahtani S., Alarifi S. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des. Dev. Ther. 2015;9:2793–2800. doi: 10.2147/DDDT.S83514. PubMed DOI PMC
Chao C.-Y., Yin M.-C. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis. 2009;6:201–206. doi: 10.1089/fpd.2008.0187. PubMed DOI
Lende A.B., Kshirsagar A.D., Deshpande A.D., Muley M.M., Patil R.R., Bafna P.A., Naik S.R. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology. 2011;19:255–263. doi: 10.1007/s10787-011-0086-4. PubMed DOI
Son J.H., Kim S.-Y., Jang H.H., Lee S.N., Ahn K.J. Protective effect of protocatechuic acid against inflammatory stress induced in human dermal fibroblasts. Biomed. Dermatol. 2018;2:9. doi: 10.1186/s41702-017-0018-z. DOI
Bullo S., Buskaran K., Baby R., Dorniani D., Fakurazi S., Hussein M.Z. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm. Res. 2019;36:91. doi: 10.1007/s11095-019-2621-8. PubMed DOI
Al-Snafi A.E. The pharmacological importance of Bauhinia variegata—A Review. Int. J. Pharm. Sci. Res. (IJPSR) 2013;4:160–164.
Rajkapoor B., Jayakar B., Murugesh N., Sakthisekaran D. Chemoprevention and cytotoxic effect of Bauhinia variegata against N-nitrosodiethylamine induced liver tumors and human cancer cell lines. J. Ethnopharmacol. 2006;104:407–409. doi: 10.1016/j.jep.2005.08.074. PubMed DOI
Sharma N., Bhardwaj R., Kumar S., Kaur S. Evaluation of Bauhinia variegata L. bark fractions for in vitro antioxidant potential and protective effect against H2O2-induced oxidative damage to pBR322 DNA. Afr. J. Pharm. Pharmacol. 2011;5:1494–1500. doi: 10.5897/AJPP11.457. DOI
Sharma N., Bhardwaj R., Singh B., Kaur S. Essential Oil Composition of Bauhinia variegata L. flowers World J. Pharm. Pharm. Sci. 2013;2:3604–3611.