Dual-mode hydrophilic interaction normal phase and reversed phase liquid chromatography of polar compounds on a single column

. 2020 Jan ; 43 (1) : 70-86. [epub] 20191104

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31630481

Adopting a stationary phase convention circumvents problematic definition of the boundary between the stationary and the mobile phase in the liquid chromatography, resulting in thermodynamically consistent and reproducible chromatographic data. Three stationary phase definition conventions provide different retention data, but equal selectivity: (i) the complete solid phase moiety; (ii) the solid porous part carrying the active interaction centers; (iii) the volume of the inner column pores. The selective uptake of water from the bulk aqueous-organic mobile phase significantly affects the volume and the properties of polar stationary phases. Some polar stationary phases provide dual-mode retention mechanism in aqueous-organic mobile phases, reversed-phase in the water-rich range, and normal-phase at high concentrations of the organic solvent in water. The linear solvation energy relationship model characterizes the structural contributions of the non-selective and selective polar interactions both in the water-rich and organic solvent-rich mobile phases. The inner-pore convention provides a single hold-up volume value for the retention prediction on the dual-mode columns over the full mobile phase range. Using the dual-mode monolithic polymethacrylate zwitterionic micro-columns alternatively in each mode in the first dimension of two-dimensional liquid chromatography, in combination with a short reversed-phase column in the second dimension, provides enhanced sample information.

Zobrazit více v PubMed

Teutenberg, T., Hollebekkers, K., Wiese, S., Boergers, A., Temperature and pH-stability of commercial stationary phases. J. Sep. Sci. 2009, 32, 1262-1274.

Zuvela, P., Skoczylas, M., Liu, J. J., Baczek, T., Kaliszan, R., Wong, M. W., Buszewski, B., Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem. Rev. (Washington, DC, U. S.) 2019, 119, 3674-3729.

Poole, C. F., Influence of solvent effects on retention of small molecules in reversed-phase liquid chromatography. Chromatographia 2019, 82, 49-64.

Gritti, F., Kazakevich, Y. V., Guiochon, G., Effect of the surface coverage of endcapped C-18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography. J. Chromatogr. A 2007, 1169, 111-124.

Poole, C. F., An interphase model for retention in liquid chromatography. Jpc-J. Planar Chromat. 2015, 28, 98-105.

Alpert, A. J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acid and other polar compounds. J. Chromatogr. 1990, 499, 177-196.

McCalley, D. V., Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? J. Chromatogr. A 2007, 1171, 46-55.

Kawachi, Y., Ikegami, T., Takubo, H., Ikegami, Y., Miyamoto, M., Tanaka, N., Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency. J. Chromatogr. A 2011, 1218, 5903-5919.

Heaton, J. C., Russell, J. J., Underwood, T., Boughtflower, R., McCalley, D. V., Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions. J. Chromatogr. A 2014, 1347, 39-48.

Strege, M. A., Stevenson, S., Lawrence, S. M., Mixed mode anion-cation exchange/hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery. Anal. Chem. 2000, 72, 4629-4633.

McCalley, D. V., Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2017, 1523, 49-71.

Jandera, P., Janás, P., Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal. Chim. Acta 2017, 967, 12-32.

Buszewski, B., Noga, S., Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal. Bioanal. Chem. 2012, 402, 231-247.

Jandera, P., Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta 2011, 692, 1-25.

Engelhardt, W. H., Hochdruck-Flussigkeits-Chromatographie, Springer, Berlin 1977.

Bocian, S., Soukup, J., Jandera, P., Buszewski, B., Thermodynamics study of solvent adsorption on octadecyl-modified silica. Chromatographia 2015, 78, 21-30.

Bocian, S., Skoczylas, M., Gorynska, I., Matyska, M., Pesek, J., Buszewski, B., Solvation processes on phenyl-bonded stationary phases-The influence of polar functional groups. J. Sep. Sci. 2016, 39, 4369-4376.

Dinh, N. P., Jonsson, T., Irgum, K., Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. J. Chromatogr. A 2013, 1320, 33-47.

Soukup, J., Jandera, P., Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. J. Chromatogr. A 2014, 1374, 102-111.

Wikberg, E., Sparrman, T., Viklund, C., Jonsson, T., Irgum, K., A H-2 nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography. J. Chromatogr. A 2011, 1218, 6630-6638.

Greco, G., Grosse, S., Letzel, T., Study of the retention behavior in zwitterionic hydrophilic interaction chromatography of isomeric hydroxy- and aminobenzoic acids. J. Chromatogr. A 2012, 1235, 60-67.

Guo, Y., Shah, R., Detailed insights into the retention mechanism of caffeine metabolites on the amide stationary phase in hydrophilic interaction chromatography. J. Chromatogr. A 2016, 1463, 121-127.

Guo, Y., Bhalodia, N., Fattal, B., Serris, I., Evaluating the adsorbed water layer on polar stationary phases for hydrophilic interaction chromatography (HILIC). Separations 2019, 6, 19-29.

Vajda, P., Felinger, A., Guiochon, G., Evaluation of surface excess isotherms in liquid chromatography. J. Chromatogr. A 2013, 1291, 41-47.

McCalley, D. V., Neue, U. D., Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography. J. Chromatogr. A 2008, 1192, 225-229.

Kazakevich, Y. V., McNair, H. M., Study of the excess adsorption of the eluent components on different reversed-phase adsorbents. J. Chromatogr. Sci. 1995, 33, 321-327.

Slaats, E. H., Kraak, J. C., Brugman, W. J. T., Poppe, H., Study of influence of competition and solvent interaction on retention in liquid-solid chromatography by measurement of activity-coefficients in mobile phase. J. Chromatogr. 1978, 149, 255-270.

Berendsen, G. E., Schoenmakers, P. J., Galan, L. D., Vigh, G., Vargapuchony, Z., On the determination of the hold-up time in reversed phase liquid-chromatography. J. Liq. Chromatogr. 1980, 3, 1669-1686.

Moldoveanu, S., David, V., Estimation of the phase ratio in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2015, 1381, 194-201.

Bocian, S., Solvation processes in liquid chromatography: The importance and measurements. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 731-738.

McCormick, R. M., Karger, B. L., Role of organic modifier sorption on retention phenomena in reversed-phase liquid-chromatography. J. Chromatogr. 1980, 199, 259-273.

Riedo, F., Kovats, E. S., Adsorption from liquid-mixtrures and liquid-chromatography. J. Chromatogr. 1982, 239, 1-28.

Rimmer, C. A., Simmons, C. R., Dorsey, J. G., The measurement and meaning of void volumes in reversed-phase liquid chromatography. J. Chromatogr. A 2002, 965, 219-232.

Jandera, P., Hájek, T., Růžičková., M., Retention models on core-shell columns. J. AOAC Int. 2017, 100, 1636-1646.

Pesek, J. J., Matyska, M. T., Our favorite materials: Silica hydride stationary phases. J. Sep. Sci. 2009, 32, 3999-4011.

Pesek, J. J., Matyska, M. T., Boysen, R. I., Yang, Y. Z., Hearn, M. T. W., Aqueous normal-phase chromatography using silica-hydride-based stationary phases. Trac-Trends in Anal. Chem. 2013, 42, 64-73.

Snyder, L. R., Dolan, J. W., Carr, P. W., The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A 2004, 1060, 77-116.

Lindsey, R. K., Eggimann, B. L., Stoll, D. R., Carr, P. W., Schure, M. R., Siepmann, J. I., Column selection for comprehensive two-dimensional liquid chromatography using the hydrophobic subtraction model. J. Chromatogr. A 2019, 1589, 47-55.

Abraham, M. H., Roses, M., Poole, C. F., Poole, S. K., Hydrogen bonding .42. Characterization of reversed-phase high-performance liquid chromatographic C-18 stationary phases. J. Phys. Org. Chem. 1997, 10, 358-368.

Chirita, R. I., West, C., Zubrzycki, S., Finaru, A. L., Elfakir, C., Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 5939-5963.

Schuster, G., Lindner, W., Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships. J. Chromatogr. A 2013, 1273, 73-94.

Lammerhofer, M., Nogueira, R., Lindner, W., Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes. Anal. Bioanal. Chem. 2011, 400, 2517-2530.

Ray, S., Takafuji, M., Ihara, H., Chromatographic evaluation of a newly designed peptide-silica stationary phase in reverse phase liquid chromatography and hydrophilic interaction liquid chromatography: Mixed mode behavior. J. Chromatogr. A 2012, 1266, 43-52.

Kozlov, O., Kadlecova, Z., Gilar, M., Gondova, T., Kalikova, K., Tesarova, E., Systematic evaluation of selected supercritical fluid chromatography diol- and diethylamine-based columns for application in hydrophilic interaction liquid chromatography. Sep. Sci. Plus 2019, 2, 81-88.

Guo, Y., Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst 2015, 140, 6452-6466.

Kumar, A., Heaton, J. C., McCalley, D. V., Practical investigation of the factors that affect the selectivity in hydrophilic interaction chromatography. J. Chromatogr. A 2013, 1276, 33-46.

Alpert, A. J., Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 2008, 80, 62-76.

Wang, L. J., Wei, W. L., Xia, Z. N., Jie, X., Xia, Z. Z. L., Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trac-Trends in Anal. Chem. 2016, 80, 495-506.

Yang, Y., Geng, X. D., Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A 2011, 1218, 8813-8825.

Zhang, K., Liu, X. D., Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J. Pharm. Biomed. Anal. 2016, 128, 73-88.

Zhao, G. F., Dong, X. Y., Sun, Y., Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol. 2009, 144, 3-11.

Wu, J. Y., Bicker, W. G., Lindner, W. G., Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. J. Sep. Sci. 2008, 31, 1492-1503.

Lammerhofer, M., Richter, M., Wu, J. Y., Nogueira, R., Bicker, W., Lindner, W., Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J. Sep. Sci. 2008, 31, 2572-2588.

Alpert, A. J., Hudecz, O., Mechtler, K., Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal. Chem. 2015, 87, 4704-4711.

Aral, T., Aral, H., Ziyadanogullari, B., Ziyadanogullari, R., Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Talanta 2015, 131, 64-73.

Shen, A. J., Li, X. L., Dong, X. F., Wei, J., Guo, Z. M., Liang, X. M., Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography. J. Chromatogr. A 2013, 1314, 63-69.

Peng, X. T., Liu, T., Ji, S. X., Feng, Y. Q., Preparation of a novel carboxyl stationary phase by “thiol-ene” click chemistry for hydrophilic interaction chromatography. J. Sep. Sci. 2013, 36, 2571-2577.

Peng, X. T., Feng, Y. Q., Hu, X. Z., Hu, D. J., Preparation and characterization of the neomycin-bonded silica stationary phase for hydrophilic-interaction chromatography. Chromatographia 2013, 76, 459-465.

Wang, Y. D., Wahab, M. F., Breitbach, Z. S., Armstrong, D. W., Carboxylated cyclofructan 6 as a hydrolytically stable high efficiency stationary phase for hydrophilic interaction liquid chromatography and mixed mode separations. Anal. Meth. 2016, 8, 6038-6045.

Liu, X. D., Pohl, C. A., HILIC behavior of a reversed-phase/cation-exchange/anion-exchange trimode column. J. Sep. Sci. 2010, 33, 779-786.

Viklund, C., Sjogren, A., Irgum, K., Nes, I., Chromatographic interactions between proteins and sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-salt buffers. Anal. Chem. 2001, 73, 444-452.

Wikberg, E., Verhage, J. J., Viklund, C., Irgum, K., Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC. J. Sep. Sci. 2009, 32, 2008-2016.

Guo, Y., Gaiki, S., Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J. Chromatogr. A 2005, 1074, 71-80.

Staňková, M., Jandera, P., Škeříková, V., Urban, J., Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aqueous normal-phase liquid chromatography. J. Chromatogr. A 2013, 1289, 47-57.

Foo, H. C., Heaton, J., Smith, N. W., Stanley, S., Monolithic poly (SPE-co-BVPE) capillary columns as a novel hydrophilic interaction liquid chromatography stationary phase for the separation of polar analytes. Talanta 2012, 100, 344-348.

Jiang, W., Fischer, G., Girmay, Y., Irgum, K., Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. J. Chromatogr. A 2006, 1127, 82-91.

Takegawa, Y., Ito, H., Keira, T., Deguchi, K., Nakagawa, H., Nishimura, S. I., Profiling of N- and O-glycopeptides of erythropoietin by capillary zwitterionic type of hydrophilic interaction chromatography/electrospray ionization mass spectrometry. J. Sep. Sci. 2008, 31, 1585-1593.

Cheng, X. D., Peng, X. T., Yu, Q. W., Yuan, B. F., Feng, Y. Q., Preparation of a novel amino-phosphate zwitterionic stationary phase for hydrophilic interaction chromatography. Chromatographia 2013, 76, 1569-1576.

Jandera, P., Janás, P., Škeříková, V., Urban, J., Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography. J. Sep. Sci. 2017, 40, 1434-1448.

Jandera, P., Hájek, T., Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants. J. Sep. Sci. 2009, 32, 3603-3619.

Vlčková, H., Ježková, K., Štětková, K., Tomšíková, H., Solich, P., Nováková, L., Study of the retention behavior of small polar molecules on different types of stationary phases used in hydrophilic interaction liquid chromatography. J. Sep. Sci. 2014, 37, 1297-1307.

Jandera, P., Hájek, T., Škeříková, V., Soukup, J., Dual hydrophilic interaction-RP retention mechanism on polar columns: Structural correlations and implementation for 2-D separations on a single column. J. Sep. Sci. 2010, 33, 841-852.

Pesek, J. J., Matyska, M. T., Larrabee, S., HPLC retention behavior on hydride-based stationary phases. J. Sep. Sci. 2007, 30, 637-647.

Pesek, J. J., Matyska, M. T., Natekar, H., Evaluation of the dual retention properties of stationary phases based on silica hydride: Perfluorinated bonded material. J. Sep. Sci. 2016, 39, 1050-1055.

Soukup, J., Jandera, P., The effect of temperature and mobile phase composition on separation mechanism of flavonoid compounds on hydrosilated silica-based columns. J. Chromatogr. A 2012, 1245, 98-108.

Soukup, J., Jandera, P., Hydrosilated silica-based columns: The effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids. J. Chromatogr. A 2012, 1228, 125-134.

Feng, J. T., Guo, Z. M., Shi, H., Gu, J. P., Jin, Y., Liang, X. M., Orthogonal separation on one beta-cyclodextrin column by switching reversed-phase liquid chromatography and hydrophilic interaction chromatography. Talanta 2010, 81, 1870-1876.

Kučerová, G., Vozka, J., Kaliková, K., Geryk, R., Plecita, D., Pajpanová, T., Tesařová, E., Enantioselective separation of unusual amino acids by high performance liquid chromatography. Sep. Purif. Technol. 2013, 119, 123-128.

Shu, Y., Lang, J. C., Breitbach, Z. S., Qiu, H. X., Smuts, J. P., Kiyono-Shimobe, M., Yasuda, M., Armstrong, D. W., Separation of therapeutic peptides with cyclofructan and glycopeptide based columns in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2015, 1390, 50-61.

Boersema, P. J., Divecha, N., Heck, A. J. R., Mohammed, S., Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J. Proteome Res. 2007, 6, 937-946.

Jiang, Z. J., Smith, N. W., Ferguson, P. D., Taylor, M. R., Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes. Anal. Chem. 2007, 79, 1243-1250.

Jandera, P., Staňková, M., Škeříková, V., Urban, J., Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part I. Reversed-phase liquid chromatography. J. Chromatogr. A 2013, 1274, 97-106.

Jandera, P., Staňková, M., Hájek, T., New zwitterionic polymethacrylate monolithic columns for one- and two-dimensional microliquid chromatography. J. Sep. Sci. 2013, 36, 2430-2440.

Staňková, M., Jandera, P., Dual retention mechanism in two-dimensional LC separations of barbiturates, sulfonamides, nucleic bases and nucleosides on polymethacrylate zwitterionic monolithic micro-columns. Chromatographia 2016, 79, 657-666.

Jandera, P., Hájek, T., Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J. Sep. Sci. 2018, 41, 145-162.

Jandera, P., Hájek, T., Šromová, Z., Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited. J. Chromatogr. A 2018, 1543, 48-57.

Stoll, D. R., Carr, P. W., Two-dimensional liquid chromatography: A state of the art tutorial. Anal. Chem. 2017, 89, 519-531.

Guiochon, G., Marchetti, N., Mriziq, K., Shalliker, R. A., Implementations of two-dimensional liquid chromatography. J. Chromatogr. A 2008, 1189, 109-168.

Gilar, M., Olivová, P., Daly, A. E., Gebler, J. C., Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 2005, 77, 6426-6434.

Jandera, P., Hájek, T., Staňková, M., Vyňuchalová, K., Česla, P., Optimization of comprehensive two-dimensional gradient chromatography coupling in-line hydrophilic interaction and reversed phase liquid chromatography. J. Chromatogr. A 2012, 1268, 91-101.

Kalili, K. M., de Villiers, A., Systematic optimisation and evaluation of on-line, off-line and stop-flow comprehensive hydrophilic interaction chromatography x reversed phase liquid chromatographic analysis of procyanidins, Part I: Theoretical considerations. J. Chromatogr. A 2013, 1289, 58-68.

Chalcraft, K. R., McCarry, B. E., Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. J. Sep. Sci. 2013, 36, 3478-3485.

Greco, G., Grosse, S., Letzel, T., Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine. J. Sep. Sci. 2013, 36, 1379-1388.

Cabooter, D., Choikhet, K., Lestremauc, F., Dittmann, M., Desmet, G., Towards a generic variable column length method development strategy for samples with a large variety in polarity. J. Chromatogr. A 2014, 1372, 174-186.

Willemse, C. M., Stander, M. A., Vestner, J., Tredoux, A. G. J., de Villiers, A., Comprehensive two-dimensional hydrophilic interaction chromatography (HILIC) x reversed-phase liquid chromatography coupled to high-resolution mass spectrometry (RP-LC-UV-MS) analysis of anthocyanins and derived pigments in red wine. Anal. Chem. 2015, 87, 12006-12015.

Hájek, T., Jandera, P., Staňková, M., Česla, P., Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. J. Chromatogr. A 2016, 1446, 91-102.

Stoll, D. R., Carr, P. W., Fast, comprehensive two-dimensional HPLC separation of tryptic peptides based on high-temperature HPLC. J. Am. Chem. Soc. 2005, 127, 5034-5035.

Jandera, P., Hájek, T., Šromová, Z., Comprehensive two-dimensional monolithic liquid chromatography of polar compounds. J. Sep. Sci. 2019, 42, 670-677.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...