Diffusion Tensor Imaging And Tractography In Autistic, Dysphasic, And Healthy Control Children
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31632032
PubMed Central
PMC6781738
DOI
10.2147/ndt.s219545
PII: 219545
Knihovny.cz E-zdroje
- Klíčová slova
- autism, developmental dysphasia, diffusion tensor imaging, magnetic resonance imaging, tractography,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diffusion tensor imaging (DTI) is a powerful tool for investigating brain anatomical connectivity. The aim of our study was to compare brain connectivity among children with autism spectrum disorders (ASD), developmental dysphasia (DD), and healthy controls (HC) in the following tracts: the arcuate fasciculus (AF), inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and uncinate fasciculus (UF). METHODS: Our sample consisted of 113 children with a mean age 8.7±2.2 years (77 boys, 36 girls), divided into three subgroups: ASD (n=39), DD (n=36), and HC (n=38). The International Classification of Diseases, 10th ed. was used to make clinical diagnoses. DTI images were collected using a 1.5 T Phillips Achieva MR imaging system. RESULTS: Detailed analyses of fractional anisotropy (FA) revealed significant differences among the ASD, DD, and HC groups in the left AF (p=0.014) and right AF (p=0.001), the left IFOF (p<0.001) and right IFOF (p<0.001), the left ILF (p<0.001) and right ILF (p<0.001), but not in the UF. Post-hoc analyses revealed three patterns of FA differences among the groups: (1) in the right AF, right IFOF, and right ILF, FA was significantly lower in the ASD group compared to the DD and HC groups; however, there was no difference in FA between DD and HC; (2) in the left AF and left IFOF, FA was significantly lower in the ASD than in the HC group, but there were no differences between DD vs HC nor DD vs ASD; and (3) in the left ILF, no difference in FA was seen between ASD and DD, but FA in both was significantly lower than in the HC. CONCLUSION: Microstructural white matter properties differed between ASD vs DD and HC subjects. The tract where FA impairment in ASD and DD subjects was the most similar was the left ILF.
Charles University 1st Faculty of Medicine Prague Czech Republic
Department of Psychology Faculty of Arts Masaryk University Brno Czech Republic
Institute of Psychology Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Travers BG, Adluru N, Ennis C, et al. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012;5:289–313. doi:10.1002/aur.1243 PubMed DOI PMC
Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004;55:323–326. doi:10.1016/j.biopsych.2003.10.022 PubMed DOI
Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism. 2013;4:24. doi:10.1186/2040-2392-4-21 PubMed DOI PMC
Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex. 2015;62:158–181. doi:10.1016/j.cortex.2014.10.014 PubMed DOI
Yamasaki T, Maekawa T, Fujita T, Tobimatsu S. Connectopathy in autism spectrum disorders: a review of evidence from visual evoked potentials and diffusion magnetic resonance imaging. Front Neurosci. 2017;11:627. doi:10.3389/fnins.2017.00627 PubMed DOI PMC
Hoppenbrouwers M, Vandermosten M, Boets B. Autism as a disconnection syndrome: a qualitative and quantitative review of diffusion tensor imaging studies. Res Autism Spectr Disord. 2014;8:387–412. doi:10.1016/j.rasd.2013.12.018 DOI
Verhoeven JS, Rommel N, Prodi E, et al. Is there a common neuroanatomical substrate of language deficit between autism spectrum disorder and specific language impairment? Cereb Cortex. 2012;22:2263–2271. doi:10.1093/cercor/bhr115 PubMed DOI
Roberts TPL, Heiken K, Zarnow D, et al. Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment. AJNR Am J Neuroradiol. 2014;35:587–592. doi:10.3174/ajnr.A3754 PubMed DOI PMC
Vydrova R, Komarek V, Sanda J, et al. Structural alterations of the language connectome in children with specific language impairment. Brain Lang. 2015;151:35–41. doi:10.1016/j.bandl.2015.10.003 PubMed DOI
Hirose K, Miyata J, Sugihara G, et al. Fiber tract associated with autistic traits in healthy adults. J Psychiatr Res. 2014;59:117–124. doi:10.1016/j.jpsychires.2014.09.001 PubMed DOI
Boets B, Van Eylen L, Sitek K, et al. Alterations in the inferior longitudinal fasciculus in autism and associations with visual processing: a diffusion-weighted MRI study. Mol Autism. 2018;9:10. doi:10.1186/s13229-018-0188-6 PubMed DOI PMC
Herbet G, Zemmoura I, Duffau H. Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses. Front Neuroanat. 2018;12:77. doi:10.3389/fnana.2018.00077 PubMed DOI PMC
World Health Organization. International Classification of Diseases. (10th Ed.). Geneva: WHO; 1992.
Lord C, Risi S, Lambrecht L, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–223. PubMed
Lord C, Rutter M, LeCouteur A. Autism diagnostic interview - revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–685. PubMed
McGhee R, Ehrler DJ, DiSimoni F. Token Test for Children. Examiner’s Manual. 2nd ed. Austin, TX: Pro-Ed; 2007.
Pickering SJ, Gathercole SE. Working Memory Test Battery for Children. London: Psychological Corporation UK; 2001.
Williams J, Scott F, Stott C, et al. The CAST (childhood asperger syndrome test). Autism. 2005;9:45–68. doi:10.1177/1362361305049029 PubMed DOI
Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23(S1):208–219. doi:10.1016/j.neuroimage.2004.07.051 PubMed DOI
Woolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009;45:S173–186. doi:10.1016/j.neuroimage.2008.10.055 PubMed DOI
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–790. doi:10.1016/j.neuroimage.2011.09.015 PubMed DOI
Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20:870–888. doi:10.1016/S1053-8119(03)00336-7 PubMed DOI
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–155. doi:10.1002/hbm.10062 PubMed DOI PMC
Jenkinson M, Smith SM. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–156. PubMed
Jenkinson M, Bannister P, Brady JM, Smith SM. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. PubMed
Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48:63–72. doi:10.1016/j.neuroimage.2009.06.060 PubMed DOI PMC
Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18:712–721. doi:10.1109/42.796284 PubMed DOI
Andersson JLR, Jenkinson M, Smith S. Non-linear optimisation. FMRIB technical report TR07JA1; 2007. Available from: www.fmrib.ox.ac.uk/analysis/techrep. Accessed September12, 2019.
Andersson JLR, Jenkinson M, Smith S. Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2; 2007, Available from: www.fmrib.ox.ac.uk/analysis/techrep. Accessed September12, 2019.
Behrens TEJ, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077–1088. doi:10.1002/mrm.10609 PubMed DOI
Behrens TEJ, Johansen-Berg H, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations. What can we gain? NeuroImage. 2007;23:144–155. doi:10.1016/j.neuroimage.2006.09.018 PubMed DOI PMC
Mazziotta JC, Toga AW, Evans A, Fox P. Lancaster JA probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage. 1995;2:89–101. PubMed
Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp. 1995;3:190–208. doi:10.1002/hbm.v3:3 DOI
Giorgio A, Watkins KE, Chadwick M, et al. Longitudinal changes in grey and white matter during adolescence. NeuroImage. 2010;49:94–103. doi:10.1016/j.neuroimage.2009.08.003 PubMed DOI
Chen JL, Kumar S, Williamson VJ, Scholz J, Griffiths TD, Stewart L. Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm. Front Psychol. 2015;6:9. doi:10.3389/fpsyg.2015.00009 PubMed DOI PMC
Jones DK, Griffin LD, Alexander DC, et al. Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage. 2002;17:592–617. PubMed
Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44:1105–1132. doi:10.1016/j.cortex.2008.05.004 PubMed DOI
Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–1505. doi:10.1016/j.neuroimage.2006.02.024 PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: http://www.R-project.org/. Accessed September12, 2019.
Kumar A, Sundaram SK, Sivaswamy L, et al. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex. 2010;20:2103–2113. doi:10.1093/cercor/bhp278 PubMed DOI
Barnea-Goraly N, Lotspeich LJ, Reiss AL. Similar white matter aberrations in children with autism and their unaffected siblings. Arch Gen Psychiatry. 2010;67:1052–1060. doi:10.1001/archgenpsychiatry.2010.123 PubMed DOI
Bloemen OJ, Deeley Q, Sundram F, et al. White matter integrity in asperger syndrome: a preliminary diffusion tensor magnetic resonance imaging study in adults. Autism Res. 2010;3:203–213. doi:10.1002/aur.146 PubMed DOI
Noriuchi M, Kikuchi Y, Yoshiura T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 2010;1362:141–149. doi:10.1016/j.brainres.2010.09.051 PubMed DOI
Sahyoun CP, Belliveau JW, Mody M. White matter integrity and pictorial reasoning in high-functioning children with autism. Brain Cogn. 2010;73:180–188. doi:10.1016/j.bandc.2010.05.002 PubMed DOI PMC
Groen WB, Buitelaar JK, van der Gaag RJ, Zwiers MP. Pervasive microstructural abnormalities in autism: a DTI study. J Psychiatry Neurosci. 2011;36:32–40. doi:10.1503/jpn.090100 PubMed DOI PMC
Jou RJ, Jackowski AP, Papademetris X, Rajeevan N, Staib LH, Volkmar FR. Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of abnormal neural connectivity. Aust N Z J Psychiatry. 2011;45:153–162. doi:10.3109/00048674.2011.623660 PubMed DOI PMC
Jou RJ, Mateljevic N, Kaiser MD, Sugrue DR, Volkmar FR, Pelphrey KA. Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. AJNR Am J Neuroradiol. 2011;32:1607–1613. doi:10.3174/ajnr.A2558 PubMed DOI PMC
Shukla DK, Keehn B, Smylie DM, Muller RA. Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia. 2011;49:1378–1382. doi:10.1016/j.neuropsychologia.2011.05.022 PubMed DOI PMC
Itahashi T, Yamada T, Nakamura M, et al. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study. Neuroimage Clin. 2015;7:155–169. doi:10.1016/j.nicl.2014.11.019 PubMed DOI PMC
Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. NeuroImage. 2010;50:873–882. doi:10.1016/j.neuroimage.2010.01.011 PubMed DOI
Cheung C, Chua SE, Khong PL, et al. White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. J Child Psychol Psychiatry. 2009;50:1102–1112. doi:10.1111/j.1469-7610.2009.02086.x PubMed DOI
Billeci L, Calderoni S, Tosetti M, Catani M, Muratori F. White matter connectivity in children with autism spectrum disorders: a tract-based spatial statistics study. BMC Neurol. 2012;12:148. doi:10.1186/1471-2377-12-148 PubMed DOI PMC
Kirkovski M, Enticott PG, Maller JJ, Rossell SL, Fitzgerald PB. Diffusion tensor imaging reveals no white matter impairments among adults with autism spectrum disorder. Psychiatry Res. 2015;233:64–72. doi:10.1016/j.pscychresns.2015.05.003 PubMed DOI
Lazar M, Miles LM, Babb JS, Donaldson JB. Axonal deficits in young adults with high functioning autism and their impact on processing speed. Neuroimage Clin. 2014;4:417–425. doi:10.1016/j.nicl.2014.01.014 PubMed DOI PMC
Pugliese L, Catani M, Ameis S, et al. The anatomy of extended limbic pathways in asperger syndrome: a preliminary diffusion tensor imaging tractography study. NeuroImage. 2008;47:427–434. doi:10.1016/j.neuroimage.2009.05.014 PubMed DOI
Naigles LR, Johnson R, Mastergeorge A, et al. Neural correlates of language variability in preschool-aged boys with autism spectrum disorder. Autism Res. 2017;10:1107–1119. doi:10.1002/aur.1756 PubMed DOI PMC
Bradstreet LE, Hecht EE, King TZ, Turner JL, Robins DL. Associations between autistic traits and fractional anisotropy values in white matter tracts in a nonclinical sample of young adults. Exp Brain Res. 2017;235:259–267. doi:10.1007/s00221-016-4791-5 PubMed DOI
Happe F, Ronald A, Plomin R. Time to give up on a single explanation for autism. Nat Neurosci. 2006;9:1218–1220. doi:10.1038/nn1770 PubMed DOI
Hrdlicka M, Dudova I. Controversies in autism: is a broader model of social disorders needed? Child Adolesc Psychiatry Ment Health. 2013;7:9. doi:10.1186/1753-2000-7-9 PubMed DOI PMC
Johnson MH. Autism as an adaptive common variant pathway for human brain development. Dev Cogn Neurosci. 2017;25:5–11. doi:10.1016/j.dcn.2017.02.004 PubMed DOI PMC
Zhang F, Savadjiev P, Cai W, et al. Whole brain white matter connectivity analysis using machine learning: an application to autism. NeuroImage. 2018;172:826–837. doi:10.1016/j.neuroimage.2017.10.029 PubMed DOI PMC
Catani M, Jones DK, Daly E, et al. Altered cerebellar feedback projections in asperger syndrome. NeuroImage. 2008;41:1184–1191. doi:10.1016/j.neuroimage.2008.03.041 PubMed DOI