Molecular basis for the P450-catalyzed C-N bond formation in indolactam biosynthesis

. 2019 Dec ; 15 (12) : 1206-1213. [epub] 20191021

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31636430
Odkazy

PubMed 31636430
DOI 10.1038/s41589-019-0380-9
PII: 10.1038/s41589-019-0380-9
Knihovny.cz E-zdroje

The catalytic versatility of cytochrome P450 monooxygenases is remarkable. Here, we present mechanistic and structural characterizations of TleB from Streptomyces blastmyceticus and its homolog HinD from Streptoalloteichus hindustanus, which catalyze unusual intramolecular C-N bond formation to generate indolactam V from the dipeptide N-methylvalyl-tryptophanol. In vitro analyses demonstrated that both P450s exhibit promiscuous substrate specificity, and modification of the N13-methyl group resulted in the formation of indole-fused 6/5/6 tricyclic products. Furthermore, X-ray crystal structures in complex with substrates and structure-based mutagenesis revealed the intimate structural details of the enzyme reactions. We propose that the generation of a diradical species is critical for the indolactam formation, and that the intramolecular C(sp2)-H amination is initiated by the abstraction of the N1 indole hydrogen. After indole radical repositioning and subsequent removal of the N13 hydrogen, the coupling of the properly-folded diradical leads to the formation of the C4-N13 bond of indolactam.

Zobrazit více v PubMed

Davies, H. M. L., Du Bois, J. & Yu, J. Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011). PubMed DOI

Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011). PubMed DOI

Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012). DOI

Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016). PubMed DOI

Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018). PubMed DOI PMC

Liu, Y. J. et al. Overcoming the limitation of directed C–H functionalization of heterocycles. Nature 515, 389–393 (2014). PubMed DOI PMC

Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014). PubMed DOI PMC

Rudolf, J. D., Chang, C. Y., Ma, M. & Shen, B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141–1172 (2017). PubMed DOI PMC

Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C bonds by enzymatic oxidation-reduction reactions. Chem. Rev. 118, 6573–6655 (2018). PubMed DOI

Zhang, X. W. & Li, S. Y. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017). PubMed DOI

Podust, L. M. & Sherman, D. H. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 29, 1251–1266 (2012). PubMed DOI PMC

Tang, M. et al. Oxidative cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333 (2017). PubMed DOI

Hartwig, J. F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008). PubMed DOI PMC

Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017). PubMed DOI

Barry, S. M. et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin biosynthesis. Nat. Chem. Biol. 8, 814–816 (2012). PubMed DOI PMC

Lin, H. C. et al. P450-mediated coupling of indole fragments to forge communesin and unnatural isomers. J. Am. Chem. Soc. 138, 4002–4005 (2016). PubMed DOI PMC

Irie, K. et al. The Epstein–Barr virus early antigen inducing indole alkaloids, (−)-indolactam V and its related compounds, produced by actinomycetes. Agric. Biol. Chem. 49, 1269–1274 (1984).

Chen, S. et al. Small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009). PubMed DOI

Lim, H. J., Gallucci, J. C. & Rajanbabu, T. V. Annulzated diketopiperazines from dipeptides or Schollkopf reagents via tandem cyclization-intramolecular N-arylation. Org. Lett. 12, 2162–2165 (2010). PubMed DOI PMC

Nakamura, H., Yasui, K., Kanda, Y. & Baran, P. S. 11-Step total synthesis of teleocidins B-1–B-4. J. Am. Chem. Soc. 141, 1494–1497 (2019). PubMed DOI PMC

Edwards, D. J. & Gerwick, W. H. Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of novel aromatic prenyltransferase. J. Am. Chem. Soc. 126, 11432–11433 (2004). PubMed DOI

Read, J. A. & Walsh, C. T. The lyngbyatoxin biosynthetic assembly line: chain release by four-electron reduction of a dipeptidyl thioester to the corresponding alcohol. J. Am. Chem. Soc. 129, 15762–15763 (2007). PubMed DOI

Huynh, M. U. et al. Enzymatic production of (−)-indolactam V by ltxB, a cytochrome P450 monooxynase. J. Nat. Prod. 73, 71–74 (2010). PubMed DOI

Awakawa, T. et al. A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J. Am. Chem. Soc. 136, 9910–9913 (2014). PubMed DOI

Abe, I. Biosynthesis studies on teleocidins in Streptomyces. J. Antibiot. 71, 763–768 (2018). DOI

Mori, T. et al. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nat. Commun. 7, 10849 (2016). PubMed DOI PMC

Walsh, C. T. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem. Biol. 9, 2718–2728 (2014). PubMed DOI

lrie, K. et al. Synthesis of 6-substituted indolactams by microbial conversion. Tetrahedron 51, 6255–6266 (1995). DOI

Bachmann, B. O. & Ravel, J. In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009). PubMed DOI

Tummino, P. J. & Copeland, R. A. Residence time of receptor–ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008). PubMed DOI

Quesenberry, M. S. & Lee, Y. C. A rapid formaldehyde assay using purpald reagent: application under periodation conditions. Anal. Biochem. 234, 50–55 (1996). PubMed DOI

Parisi, G. et al. Substrate-induced conformational change in cytochrome P450 OleP. FASEB J. 33, 1787–1800 (2018). PubMed DOI

Takahashi, S. et al. Structure-function analyses of cytochrome P450revI involved in reveromycin A biosynthesis and evaluation of the biological activity of its substrate, reveromycin T. J. Biol. Chem. 289, 32446–32458 (2014). PubMed DOI PMC

Li, Q., Chen, Y., Zhang, G. & Zhang, H. Structural analysis of SgvP involved in carbon-sulfur bond formation during griseoviridin biosynthesis. FEBS Lett. 591, 1295–1304 (2017). PubMed DOI

Poulos, T. L. Cytochrome P450 flexibility. Proc. Natl Acad. Sci. USA 100, 13121–13122 (2003). PubMed DOI PMC

Skopalík, J., Anzenbacher, P. & Otyepka, M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J. Phys. Chem. B 112, 8165–8173 (2008). PubMed DOI

Sevrioukova, I. F. & Poulos, T. L. Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proc. Natl Acad. Sci. USA 114, 486–491 (2017). PubMed DOI

Tietz, D. R., Podust, L. M., Sherman, D. H. & Pochapsky, T. C. Solution conformations and dynamics of substrate-bound cytochrome P450 MycG. Biochemistry 56, 2701–2714 (2017). PubMed DOI

Davies, H. M. & Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008). PubMed DOI PMC

Singh, B. K., Polley, A. & Jana, R. Copper(II)-mediated intermolecular C(sp PubMed DOI

McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013). DOI

McIntosh, J. A., Farwell, C. C. & Arnold, F. H. Expanding P450 catalytic reaction space through evolution and engineering. Curr. Opin. Chem. Biol. 19, 126–134 (2014). PubMed DOI

Tsutsumi, H. et al. Unprecedented cyclization catalyzed by a cytochrome P450 in benzastatin biosynthesis. J. Am. Chem. Soc. 140, 6631–6639 (2018). PubMed DOI

Onaka, H., Asamizu, S., Igarashi, Y., Yoshida, R. & Furumai, T. Cytochrome P450 homolog is responsible for C–N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp. TP-A0274. Biosci. Biotechnol. Biochem. 69, 1753–1759 (2005). PubMed DOI

Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419–425 (2016). PubMed DOI PMC

Alkhalaf, L. M. et al. Binding of distinct substrate conformations enables hydroxylation of remote sites in thaxtomin D by cytochrome P450 TxtC. J. Am. Chem. Soc. 141, 216–222 (2018). PubMed DOI

Barton, D. H. R. et al. Investigations on the biosynthesis of morphine alkaloids. J. Chem. Soc. 0, 2423–2438 (1965). DOI

Johnny Hioe, J., Šakić, D., Vrček, V. & Zipse, H. The stability of nitrogen-centered radicals. Org. Biomol. Chem. 13, 157–169 (2015). PubMed DOI

Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995). PubMed DOI PMC

Iizaka, Y., Takeda, R., Senzaki, Y., Fukumoto, A. & Anzai, Y. Cytochrome P450 enzyme RosC catalyzes a multistep oxidation reaction to form the non-active compound 20-carboxylrosamicin. FEMS Microbiol. Lett. 364, fnx110 (2017). DOI

Guengerich, F. P., Wilkey, C. J. & Phan, T. T. N. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J. Biol. Chem. 294, 10928–10941 (2019). PubMed DOI PMC

Heredia, V. V., Thomson, J., Nettleton, D. & Sun, S. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry 45, 7553–7562 (2006). PubMed DOI

Risky, L. et al. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nat. Chem. Biol. 14, 342–344 (2018). DOI

Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010). PubMed DOI PMC

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). PubMed DOI PMC

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). PubMed DOI

Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016). PubMed DOI PMC

Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018). PubMed DOI PMC

Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004). PubMed DOI

Yukl, E. T., Goblirsch, B. R., Davidson, V. L. & Wilmot, C. M. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation. Biochemistry 50, 2931–2938 (2011). PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...