Molecular basis for the P450-catalyzed C-N bond formation in indolactam biosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31636430
DOI
10.1038/s41589-019-0380-9
PII: 10.1038/s41589-019-0380-9
Knihovny.cz E-zdroje
- MeSH
- katalýza MeSH
- laktamy metabolismus MeSH
- Streptomyces metabolismus MeSH
- substrátová specifita MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- laktamy MeSH
- systém (enzymů) cytochromů P-450 MeSH
The catalytic versatility of cytochrome P450 monooxygenases is remarkable. Here, we present mechanistic and structural characterizations of TleB from Streptomyces blastmyceticus and its homolog HinD from Streptoalloteichus hindustanus, which catalyze unusual intramolecular C-N bond formation to generate indolactam V from the dipeptide N-methylvalyl-tryptophanol. In vitro analyses demonstrated that both P450s exhibit promiscuous substrate specificity, and modification of the N13-methyl group resulted in the formation of indole-fused 6/5/6 tricyclic products. Furthermore, X-ray crystal structures in complex with substrates and structure-based mutagenesis revealed the intimate structural details of the enzyme reactions. We propose that the generation of a diradical species is critical for the indolactam formation, and that the intramolecular C(sp2)-H amination is initiated by the abstraction of the N1 indole hydrogen. After indole radical repositioning and subsequent removal of the N13 hydrogen, the coupling of the properly-folded diradical leads to the formation of the C4-N13 bond of indolactam.
Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
Zobrazit více v PubMed
Davies, H. M. L., Du Bois, J. & Yu, J. Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011). PubMed DOI
Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011). PubMed DOI
Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012). DOI
Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016). PubMed DOI
Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018). PubMed DOI PMC
Liu, Y. J. et al. Overcoming the limitation of directed C–H functionalization of heterocycles. Nature 515, 389–393 (2014). PubMed DOI PMC
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014). PubMed DOI PMC
Rudolf, J. D., Chang, C. Y., Ma, M. & Shen, B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141–1172 (2017). PubMed DOI PMC
Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C bonds by enzymatic oxidation-reduction reactions. Chem. Rev. 118, 6573–6655 (2018). PubMed DOI
Zhang, X. W. & Li, S. Y. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017). PubMed DOI
Podust, L. M. & Sherman, D. H. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 29, 1251–1266 (2012). PubMed DOI PMC
Tang, M. et al. Oxidative cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333 (2017). PubMed DOI
Hartwig, J. F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008). PubMed DOI PMC
Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017). PubMed DOI
Barry, S. M. et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin biosynthesis. Nat. Chem. Biol. 8, 814–816 (2012). PubMed DOI PMC
Lin, H. C. et al. P450-mediated coupling of indole fragments to forge communesin and unnatural isomers. J. Am. Chem. Soc. 138, 4002–4005 (2016). PubMed DOI PMC
Irie, K. et al. The Epstein–Barr virus early antigen inducing indole alkaloids, (−)-indolactam V and its related compounds, produced by actinomycetes. Agric. Biol. Chem. 49, 1269–1274 (1984).
Chen, S. et al. Small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009). PubMed DOI
Lim, H. J., Gallucci, J. C. & Rajanbabu, T. V. Annulzated diketopiperazines from dipeptides or Schollkopf reagents via tandem cyclization-intramolecular N-arylation. Org. Lett. 12, 2162–2165 (2010). PubMed DOI PMC
Nakamura, H., Yasui, K., Kanda, Y. & Baran, P. S. 11-Step total synthesis of teleocidins B-1–B-4. J. Am. Chem. Soc. 141, 1494–1497 (2019). PubMed DOI PMC
Edwards, D. J. & Gerwick, W. H. Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of novel aromatic prenyltransferase. J. Am. Chem. Soc. 126, 11432–11433 (2004). PubMed DOI
Read, J. A. & Walsh, C. T. The lyngbyatoxin biosynthetic assembly line: chain release by four-electron reduction of a dipeptidyl thioester to the corresponding alcohol. J. Am. Chem. Soc. 129, 15762–15763 (2007). PubMed DOI
Huynh, M. U. et al. Enzymatic production of (−)-indolactam V by ltxB, a cytochrome P450 monooxynase. J. Nat. Prod. 73, 71–74 (2010). PubMed DOI
Awakawa, T. et al. A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J. Am. Chem. Soc. 136, 9910–9913 (2014). PubMed DOI
Abe, I. Biosynthesis studies on teleocidins in Streptomyces. J. Antibiot. 71, 763–768 (2018). DOI
Mori, T. et al. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nat. Commun. 7, 10849 (2016). PubMed DOI PMC
Walsh, C. T. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem. Biol. 9, 2718–2728 (2014). PubMed DOI
lrie, K. et al. Synthesis of 6-substituted indolactams by microbial conversion. Tetrahedron 51, 6255–6266 (1995). DOI
Bachmann, B. O. & Ravel, J. In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009). PubMed DOI
Tummino, P. J. & Copeland, R. A. Residence time of receptor–ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008). PubMed DOI
Quesenberry, M. S. & Lee, Y. C. A rapid formaldehyde assay using purpald reagent: application under periodation conditions. Anal. Biochem. 234, 50–55 (1996). PubMed DOI
Parisi, G. et al. Substrate-induced conformational change in cytochrome P450 OleP. FASEB J. 33, 1787–1800 (2018). PubMed DOI
Takahashi, S. et al. Structure-function analyses of cytochrome P450revI involved in reveromycin A biosynthesis and evaluation of the biological activity of its substrate, reveromycin T. J. Biol. Chem. 289, 32446–32458 (2014). PubMed DOI PMC
Li, Q., Chen, Y., Zhang, G. & Zhang, H. Structural analysis of SgvP involved in carbon-sulfur bond formation during griseoviridin biosynthesis. FEBS Lett. 591, 1295–1304 (2017). PubMed DOI
Poulos, T. L. Cytochrome P450 flexibility. Proc. Natl Acad. Sci. USA 100, 13121–13122 (2003). PubMed DOI PMC
Skopalík, J., Anzenbacher, P. & Otyepka, M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J. Phys. Chem. B 112, 8165–8173 (2008). PubMed DOI
Sevrioukova, I. F. & Poulos, T. L. Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proc. Natl Acad. Sci. USA 114, 486–491 (2017). PubMed DOI
Tietz, D. R., Podust, L. M., Sherman, D. H. & Pochapsky, T. C. Solution conformations and dynamics of substrate-bound cytochrome P450 MycG. Biochemistry 56, 2701–2714 (2017). PubMed DOI
Davies, H. M. & Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008). PubMed DOI PMC
Singh, B. K., Polley, A. & Jana, R. Copper(II)-mediated intermolecular C(sp PubMed DOI
McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013). DOI
McIntosh, J. A., Farwell, C. C. & Arnold, F. H. Expanding P450 catalytic reaction space through evolution and engineering. Curr. Opin. Chem. Biol. 19, 126–134 (2014). PubMed DOI
Tsutsumi, H. et al. Unprecedented cyclization catalyzed by a cytochrome P450 in benzastatin biosynthesis. J. Am. Chem. Soc. 140, 6631–6639 (2018). PubMed DOI
Onaka, H., Asamizu, S., Igarashi, Y., Yoshida, R. & Furumai, T. Cytochrome P450 homolog is responsible for C–N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp. TP-A0274. Biosci. Biotechnol. Biochem. 69, 1753–1759 (2005). PubMed DOI
Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419–425 (2016). PubMed DOI PMC
Alkhalaf, L. M. et al. Binding of distinct substrate conformations enables hydroxylation of remote sites in thaxtomin D by cytochrome P450 TxtC. J. Am. Chem. Soc. 141, 216–222 (2018). PubMed DOI
Barton, D. H. R. et al. Investigations on the biosynthesis of morphine alkaloids. J. Chem. Soc. 0, 2423–2438 (1965). DOI
Johnny Hioe, J., Šakić, D., Vrček, V. & Zipse, H. The stability of nitrogen-centered radicals. Org. Biomol. Chem. 13, 157–169 (2015). PubMed DOI
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995). PubMed DOI PMC
Iizaka, Y., Takeda, R., Senzaki, Y., Fukumoto, A. & Anzai, Y. Cytochrome P450 enzyme RosC catalyzes a multistep oxidation reaction to form the non-active compound 20-carboxylrosamicin. FEMS Microbiol. Lett. 364, fnx110 (2017). DOI
Guengerich, F. P., Wilkey, C. J. & Phan, T. T. N. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J. Biol. Chem. 294, 10928–10941 (2019). PubMed DOI PMC
Heredia, V. V., Thomson, J., Nettleton, D. & Sun, S. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry 45, 7553–7562 (2006). PubMed DOI
Risky, L. et al. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nat. Chem. Biol. 14, 342–344 (2018). DOI
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010). PubMed DOI PMC
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). PubMed DOI PMC
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). PubMed DOI
Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016). PubMed DOI PMC
Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018). PubMed DOI PMC
Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004). PubMed DOI
Yukl, E. T., Goblirsch, B. R., Davidson, V. L. & Wilmot, C. M. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation. Biochemistry 50, 2931–2938 (2011). PubMed DOI