Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31636503
PubMed Central
PMC6794329
DOI
10.3897/bdj.7.e38492
PII: 38492
Knihovny.cz E-zdroje
- Klíčová slova
- Araneae, Europe, cave, spiders, subterranean biology, troglobiont, troglophile,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Spiders (Arachnida: Araneae) are widespread in subterranean ecosystems worldwide and represent an important component of subterranean trophic webs. Yet, global-scale diversity patterns of subterranean spiders are still mostly unknown. In the frame of the CAWEB project, a European joint network of cave arachnologists, we collected data on cave-dwelling spider communities across Europe in order to explore their continental diversity patterns. Two main datasets were compiled: one listing all subterranean spider species recorded in numerous subterranean localities across Europe and another with high resolution data about the subterranean habitat in which they were collected. From these two datasets, we further generated a third dataset with individual geo-referenced occurrence records for all these species. NEW INFORMATION: Data from 475 geo-referenced subterranean localities (caves, mines and other artificial subterranean sites, interstitial habitats) are herein made available. For each subterranean locality, information about the composition of the spider community is provided, along with local geomorphological and habitat features. Altogether, these communities account for > 300 unique taxonomic entities and 2,091 unique geo-referenced occurrence records, that are made available via the Global Biodiversity Information Facility (GBIF) (Mammola and Cardoso 2019). This dataset is unique in that it covers both a large geographic extent (from 35° south to 67° north) and contains high-resolution local data on geomorphological and habitat features. Given that this kind of high-resolution data are rarely associated with broad-scale datasets used in macroecology, this dataset has high potential for helping researchers in tackling a range of biogeographical and macroecological questions, not necessarily uniquely related to arachnology or subterranean biology.
Croatian Biospeleological Society Zagreb Croatia Croatian Biospeleological Society Zagreb Croatia
Ecole d'Ingénieur de Purpan Toulouse France Ecole d'Ingénieur de Purpan Toulouse France
Independent researcher Basque Country Spain Independent researcher Basque Country Spain
Independent Researcher Hummeltal Germany Independent Researcher Hummeltal Germany
Ruđer Bošković Institute Zagreb Croatia Ruđer Bošković Institute Zagreb Croatia
Zobrazit více v PubMed
Arnedo Miquel A., Oromí Pedro, Múrria Cesc, Macías-Hernández Nuria, Ribera Carles. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands. Invertebrate Systematics. 2007;21(6):623–660. doi: 10.1071/is07015. DOI
Cardoso P., Scharff N. First record of the spider family Symphytognathidae in Europe and description of Anapistula ataecina sp. n. (Araneae) Zootaxa. 2009;2246:45–45.
Cardoso Pedro. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. International Journal of Speleology. 2012;41(1):83–94. doi: 10.5038/1827-806x.41.1.9. DOI
Chiavazzo Eliodoro, Isaia Marco, Mammola Stefano, Lepore Emiliano, Ventola Luigi, Asinari Pietro, Pugno Nicola Maria. Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon. Scientific Reports. 2015;5(1):7611. doi: 10.1038/srep07611. PubMed DOI PMC
Christman Mary C., Culver David C. The relationship between cave biodiversity and available habitat. Journal of Biogeography. 2002;28(3):367–380. doi: 10.1046/j.1365-2699.2001.00549.x. DOI
Culver David C, Trontelj Peter, Zagmajster Maja, Pipan Tanja. Paving the way for standardized and comparable subterranean biodiversity studies. Subterranean Biology. 2013;10:43–50. doi: 10.3897/subtbiol.10.4759. DOI
Deharveng Louis, Bedos Anne. Diversity of terrestrial invertebrates in subterranean habitats. Cave Ecology. 2019:107–172. doi: 10.1007/978-3-319-98852-8_7. DOI
Doran N. E., Richardson A. M. M., Swain R. The reproductive behaviour of the Tasmanian cave spider Hickmania troglodytes (Araneae: Austrochilidae) Journal of Zoology. 2001;253(3):405–418. doi: 10.1017/s0952836901000371. DOI
Doran N. E., Richardson A. M. M., Swain R. The biology of Hickmania troglodytes, the Tasmanian cave spider. The Other 99%: The Conservation and Biodiversity of Invertebrates. 2017:330–332. doi: 10.7882/rzsnsw.1999.052. DOI
Hadley N. F., Ahearn G. A., Howarth F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. Journal of Arachnology. 1981;9:215–222.
Hedin Marshal. High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Molecular Ecology. 2015;24(2):346–361. doi: 10.1111/mec.13036. PubMed DOI
Hesselberg Thomas, Simonsen Daniel. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae) Subterranean Biology. 2019;31:53–65. doi: 10.3897/subtbiol.31.36222. DOI
Hesselberg Thomas, Simonsen Daniel, Juan Carlos. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour. 2019;156(10):969–996. doi: 10.1163/1568539x-00003564. DOI
Huber Bernhard A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): a review. Subterranean Biology. 2018;26:1–18. doi: 10.3897/subtbiol.26.26430. DOI
Lepore Emiliano, Marchioro Andrea, Isaia Marco, Buehler Markus J., Pugno Nicola M. Evidence of the most stretchable egg sac silk stalk, of the European Spider of the Year Meta menardi. PLoS One. 2012;7(2):e30500. doi: 10.1371/journal.pone.0030500. PubMed DOI PMC
Lipovšek Saška, Leitinger Gerd, Novak Tone, Janžekovič Franc, Gorgoń Szymon, Kamińska Karolina, Rost-Roszkowska Magdalena. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochemistry and Cell Biology. 2017;149(3):245–260. doi: 10.1007/s00418-017-1623-z. PubMed DOI
Lipovšek Saška, Novak Tone, Janžekovič Franc, Brdelak Nina, Leitinger Gerd. Changes in the midgut diverticula epithelial cells of the European cave spider, Meta menardi, under controlled winter starvation. Scientific Reports. 2018;8(1):13645. doi: 10.1038/s41598-018-31907-3. PubMed DOI PMC
Lunghi Enrico. Ecology and life history of Meta bourneti (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy) PeerJ. 2018;6:e6049. doi: 10.7717/peerj.6049. PubMed DOI PMC
Mammola Stefano, Isaia Marco. Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history. International Journal of Speleology. 2014;43(3):343–353. doi: 10.5038/1827-806x.43.3.11. DOI
Mammola Stefano, Piano Elena, Isaia Marco. Step back! Niche dynamics in cave-dwelling predators. Acta Oecologica. 2016;75:35–42. doi: 10.1016/j.actao.2016.06.011. DOI
Mammola Stefano, Isaia Marco. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1853):20170193. doi: 10.1098/rspb.2017.0193. PubMed DOI PMC
Mammola S., Gasparo F., Komnenov M., Růžička V., Déjean S., Danflous S., Brustel H., Vargovitsh R. S., Rozwałka R., Moldovan O. T., Pavlek M., Deltshev C., Petrov B., Naumova M., Ćurčić S., Mock A., Kováč L., Cardoso P., Dányi L., Angyal D., Balázs G., Ribera C., Prieto C. E., Fernández J., Komposch C., Carter J., Isaia M. Spiders in caves: the CAWEB project. In: Goodacre S. L., editor. Abstract book of the 30th European Congress of Arachnology; 30th European Congress of Arachnology, ECA 2017; University of Nottingham – UK. 20–25 August 2017; Nottingham: 2017. 163
Mammola Stefano, Leroy Boris. Applying species distribution models to caves and other subterranean habitats. Ecography. 2018;41(7):1194–1208. doi: 10.1111/ecog.03464. DOI
Mammola Stefano, Cardoso Pedro, Ribera Carles, Pavlek Martina, Isaia Marco. A synthesis on cave-dwelling spiders in Europe. Journal of Zoological Systematics and Evolutionary Research. 2018;56(3):301–316. doi: 10.1111/jzs.12201. DOI
Mammola Stefano. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography. 2019;42(7):1331-1351. doi: 10.1111/ecog.03905. DOI
Mammola S, Cardoso P. cave_dwelling_spiders_europe. Biodiversity Data Journal. Occurrence dataset accessed via GBIF.org on 2019-10-08. 2019 doi: 10.15468/ygocko. DOI
Mammola Stefano, Piano Elena, Malard Florian, Vernon Philippe, Isaia Marco. Extending Janzen's hypothesis to temperate regions: a test using subterranean ecosystems. Functional Ecology. 2019;33(9):1638–1650. doi: 10.1111/1365-2435.13382. DOI
Mammola S., Cardoso P., Angyal D., Balázs G., Blick T., Brustel H., Carter J., Ćurčić S., Danflous S., Dányi L., Déjean S., Deltshev C., Elverici M., Fernández J., Gasparo F., Komnenov M., Komposch C., Kováč L., Kunt K. B., Mock A., Moldovan O., Naumova M., Pavlek M., Prieto C. E., Ribera C., Rozwałka R., Růžička V., Vargovitsh R. S., Zaenker S., Isaia M. Local versus broad scale environmental drivers of continental beta diversity patterns in subterranean spider communities across Europe. Proceeding of the Royal Society B: Biological Sciences. 2019;In press PubMed PMC
Michalik Peter, Ramírez Martín J., Wirkner Christian S., Lipke Elisabeth. Morphological evidence for limited sperm production in the enigmatic Tasmanian cave spider Hickmania troglodytes (Austrochilidae, Araneae) Invertebrate Biology. 2014;133(2):180–187. doi: 10.1111/ivb.12046. DOI
Miller Jeremy A. Cave adaptation in the spider genus Anthrobia (Araneae, Linyphiidae, Erigoninae) Zoologica Scripta. 2005;34(6):565–592. doi: 10.1111/j.1463-6409.2005.00206.x. DOI
Nentwig W., Blick T., Gloor D., Hänggi A., Kropf C. Araneae Version 09.2019. https://www.araneae.nmbe.ch. [2019-07-02T00:00:00+03:00];
Niemiller Matthew L., Zigler Kirk S. Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee, USA. PLoS One. 2013;8(5):e64177. doi: 10.1371/journal.pone.0064177. PubMed DOI PMC
Novak Tone, Tkavc Tina, Kuntner Matjaž, Arnett Amy E., Delakorda Saška Lipovšek, Perc Matjaž, Janžekovič Franc. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae) Acta Oecologica. 2010;36(6):522–529. doi: 10.1016/j.actao.2010.07.005. DOI
Piorkowski D., Blamires S. J., Doran N. E., Liao C. P., Wu C. L., Tso I. M. Ontogenetic shift toward stronger, tougher silk of a web-building, cave-dwelling spider. Journal of Zoology. 2017;304(2):81–89. doi: 10.1111/jzo.12507. DOI
Růžička Vlastimil, Šmilauer Petr, Mlejnek Roman. Colonization of subterranean habitats by spiders in Central Europe. International Journal of Speleology. 2013;42(2):133–140. doi: 10.5038/1827-806x.42.2.5. DOI
Yancey Mary Elizabeth, Mann Nathaniel C., Milne Marc A., Zigler Kirk S. Egg sacs of Liocranoides Keyserling, 1881 (Araneae: Zoropsidae) cave spiders. Journal of Arachnology. 2018;46(3):553–555. doi: 10.1636/joa-s-17-074.1. DOI
Yao Zhiyuan, Dong Tingting, Zheng Guo, Fu Jinzhong, Li Shuqiang. High endemism at cave entrances: a case study of spiders of the genus Uthina. Scientific Reports. 2016;6(1):35757. doi: 10.1038/srep35757. PubMed DOI PMC
Zagmajster M., Culver D. C., Christman M. C., Sket B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodiversity and Conservation. 2010;19:3035–3048. doi: 10.1007/s10531-010-9873-2. DOI
Zhang Yuanyuan, Li Shuqiang. Ancient lineage, young troglobites: recent colonization of caves by Nesticella spiders. BMC Evolutionary Biology. 2013;13(1):183. doi: 10.1186/1471-2148-13-183. PubMed DOI PMC
figshare
10.6084/m9.figshare.8224025