Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31662080
PubMed Central
PMC6842848
DOI
10.1098/rspb.2019.1579
Knihovny.cz E-zdroje
- Klíčová slova
- Araneae, Europe, cave, generalized dissimilarity model, latitudinal gradient, subterranean biodiversity,
- MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- ekosystém MeSH
- pavouci fyziologie MeSH
- teplota MeSH
- zeměpis MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Macroecologists seek to identify drivers of community turnover (β-diversity) through broad spatial scales. However, the influence of local habitat features in driving broad-scale β-diversity patterns remains largely untested, owing to the objective challenges of associating local-scale variables to continental-framed datasets. We examined the relative contribution of local- versus broad-scale drivers of continental β-diversity patterns, using a uniquely suited dataset of cave-dwelling spider communities across Europe (35-70° latitude). Generalized dissimilarity modelling showed that geographical distance, mean annual temperature and size of the karst area in which caves occurred drove most of β-diversity, with differential contributions of each factor according to the level of subterranean specialization. Highly specialized communities were mostly influenced by geographical distance, while less specialized communities were mostly driven by mean annual temperature. Conversely, local-scale habitat features turned out to be meaningless predictors of community change, which emphasizes the idea of caves as the human accessible fraction of the extended network of fissures that more properly represents the elective habitat of the subterranean fauna. To the extent that the effect of local features turned to be inconspicuous, caves emerge as experimental model systems in which to study broad biological patterns without the confounding effect of local habitat features.
Amgueddfa Cymru National Museum Wales Cardiff UK
Biology Centre CAS Institute of Entomology České Budějovice Czech Republic
Commissione Grotte 'E Boegan' Società Alpina delle Giulie C A 1 Trieste Italy
Conservatoire d'Espaces Naturels de Midi Pyrénées Toulouse France
Croatian Biospeleological Society Zagreb Croatia
Department of Biology Faculty of Science Eskişehir Technical University Eskişehir Turkey
Department of Life Sciences and Systems Biology University of Torino Torino Italy
Department of Systematic Zoology and Ecology Eötvös Loránd University Budapest Hungary
Department of Zoology and Animal Cell Biology University of the Basque Country Bilbao Spain
Department of Zoology Hungarian Natural History Museum Budapest Hungary
Ecole d'Ingénieur de Purpan Toulouse France
Emil Racovitza Institute of Speleology Cluj Napoca Romania
Faculty of Biology and Environmental Sciences Cardinal Stefan Wyszyński University Warszawa Poland
Independent Researcher Basque Country Spain
Independent Researcher Blwd Kuzman Josifovski Pitu Skopje Republic of North Macedonia
Independent Researcher Hummeltal Germany
Institute of Biodiversity and Ecosystem Research Sofia Bulgaria
Institute of Zoology University of Belgrade Faculty of Biology Belgrade Serbia
National Museum of Natural History Bulgarian Academy of Sciences Sofia Bulgaria
OEKOTEAM Institute for Animal Ecology and Landscape Planning Graz Austria
Pavol Jozef Šafárik University Košice Slovakia
Romanian Institute of Science and Technology Cluj Napoca Romania
Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine Kiev Ukraine
UMDI Faculty of Sciences UNAM National Autonomous University of Mexico Sisal Mexico
Verband der deutschen Höhlen und Karstforscher e 5 Fulda Germany
Zoological Collection of Cyprus Wildlife Research Institute Taşkent Kyrenia Cyprus
Zobrazit více v PubMed
Gaston KJ. 2000. Global patterns in biodiversity. Nature 405, 220 (10.1038/35012228) PubMed DOI
Legendre P, De Cáceres M.. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. (10.1111/ele.12141) PubMed DOI
Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. (10.1046/j.1461-0248.2001.00230.x) DOI
Mori AS, Isbell F, Seidl R. 2018. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564. (10.1016/j.tree.2018.04.012) PubMed DOI PMC
Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15. (10.1046/j.1461-0248.2003.00554.x) DOI
Chan W-P, Chen I-C, Colwell RK, Liu W-C, Huang C, Shen S-F. 2016. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439. (10.1126/science.aab4119) PubMed DOI
Kraft NJB, et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758. (10.1126/science.1208584) PubMed DOI
Polato NR, et al. 2018. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12 471–12 476. (10.1073/pnas.1809326115) PubMed DOI PMC
Qian H, Ricklefs RE. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737–744. (10.1111/j.1461-0248.2007.01066.x) PubMed DOI
Chase JM. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391. (10.1126/science.1187820) PubMed DOI
Ferenc M, Sedláček O, Fuchs R, Dinetti M, Fraissinet M, Storch D. 2014. Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Glob. Ecol. Biogeogr. 23, 479–489. (10.1111/geb.12130) DOI
Kelly RP, O'Donnell JL, Lowell NC, Shelton AO, Samhouri JF, Hennessey SM, Feist BE, Williams GD. 2016. Genetic signatures of ecological diversity along an urbanization gradient. PeerJ 4, e2444 (10.7717/peerj.2444) PubMed DOI PMC
Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571 (10.1038/ismej.2011.41) PubMed DOI PMC
Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. 2011. Drivers of bacterial β-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854. (10.1073/pnas.1016308108) PubMed DOI PMC
Huston MA. 1999. Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86, 393–401. (10.2307/3546645) DOI
Angermeier PL, Winston MR. 1998. Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology 79, 911–927. (10.1890/0012-9658(1998)079[0911:LVRIOL]2.0.CO) DOI
Hewitt JE, Thrush SF, Halliday J, Duffy C. 2005. The importance of small-scale habitat structure for maintaining beta diversity. Ecology 86, 1619–1626. (10.1890/04-1099) DOI
Ferger SW, Peters MK, Appelhans T, Detsch F, Hemp A, Nauss T, Otte I, Böhning-Gaese K, Schleuning M. 2017. Synergistic effects of climate and land use on avian beta-diversity. Divers. Distrib. 23, 1246–1255. (10.1111/ddi.12615) DOI
Malard F, Boutin C, Camacho AI, Ferreira D, Michel G, Sket B, Stoch F. 2009. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw. Biol. 54, 756–776. (10.1111/j.1365-2427.2009.02180.x) DOI
Zagmajster M, Eme D, Fišer C, Galassi D, Marmonier P, Stoch F, Cornu J-F, Malard F. 2014. Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145. (10.1111/geb.12200) DOI
Mammola S. 2019. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351. (10.1111/ecog.03905) DOI
Culver DC, Pipan T. 2019. The biology of caves and other subterranean habitats, 2nd edn. Oxford, UK: Oxford University Press.
Hutchison NL, Lance RF, Pekins CE, Noble ME, Leberg PL. 2016. Influence of geomorphology and surface features on the genetic structure of an important trogloxene, the secret cave cricket (Ceuthophilus secretus). Conserv. Genet. 17, 969–983. (10.1007/s10592-016-0836-3) DOI
Jaffe R, et al. 2018. Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the eastern Amazon. PeerJ 6, e4531 (10.7717/peerj.4531) PubMed DOI PMC
Jiménez-Valverde A, Sendra A, Garay P, Reboleira ASPS. 2017. Energy and speleogenesis: key determinants of terrestrial species richness in caves. Ecol. Evol. 7, 10 207–10 215. (10.1002/ece3.3558) PubMed DOI PMC
Lunghi E, Manenti R, Ficetola GF. 2017. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169 (10.7717/peerj.3169) PubMed DOI PMC
Pellegrini TG, Sales LP, Aguiar P, Ferreira RL. 2016. Linking spatial scale dependence of land-use descriptors and invertebrate cave community composition. Subterr. Biol. 18, 17–38. (10.3897/subtbiol.18.8335) DOI
Mammola S, Aharon S, Seifan M, Lubin Y, Gavish-Regev E. 2019. Exploring the interplay between local and regional drivers of distribution of a subterranean organism. Diversity 11, 1–19. (10.3390/d11080119) DOI
Mammola S, Isaia M. 2017. Spiders in caves. Proc. R. Soc. B 284, 20170193 (10.1098/rspb.2017.0193) PubMed DOI PMC
Mammola S, Cardoso P, Ribera C, Pavlek M, Isaia M. 2018. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316. (10.1111/jzs.12201) DOI
Ferrier S, Manion G, Elith J, Richardson K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264. (10.1111/j.1472-4642.2007.00341.x) DOI
Mammola S, et al. 2019. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae) Biodivers. Data J. 7, e38492 (10.3897/BDJ.7.e38492) PubMed DOI PMC
Zagmajster M, Culver DC, Christman MC, Sket B. 2010. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers. Conserv. 19, 3035–3048. (10.1007/s10531-010-9873-2) DOI
Christman MC, Culver DC. 2001. The relationship between cave biodiversity and available habitat. J. Biogeogr. 28, 367–380. (10.1046/j.1365-2699.2001.00549.x) DOI
Niemiller ML, Zigler KS. 2013. Patterns of cave biodiversity and endemism in the Appalachians and Interior Plateau of Tennessee, USA. PLoS ONE 8, e64177 (10.1371/journal.pone.0064177) PubMed DOI PMC
Trajano E, de Carvalho MR.. 2017. Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26. (10.3897/subtbiol.22.9759) DOI
Nentwig W, Gloor D, Kropf C. 2015. Spider taxonomists catch data on web. Nature 528, 479 (10.1038/528479a) PubMed DOI
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. (10.1002/joc.5086) DOI
Christman MC, Doctor DH, Niemiller ML, Weary DJ, Young JA, Zigler KS, Culver DC. 2016. Predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment. PLoS ONE 11, e0160408 (10.1371/journal.pone.0160408) PubMed DOI PMC
Mammola S, Leroy B. 2018. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208. (10.1111/ecog.03464) DOI
Mammola S, Schönhofer AL, Isaia M. 2019. Tracking the ice: subterranean harvestmen distribution matches ancient glacier margins. J. Zool. Syst. Evol. Res. 57, 548–554. (10.1111/jzs.12264) DOI
Manion G, Lisk M, Ferrier S, Nieto-Lugilde D, Mokany K, Fitzpatrick MC.. 2018. gdm: generalized dissimilarity modeling. See https://cran.r-project.org/package=gdm.
Mammola S, et al. 2019. Data from: Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe Dryad Digital Repository. (10.5061/dryad.qz612jm8z) PubMed DOI PMC
Zuur AF, Ieno EN, Elphick CS. 2009. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. (10.1111/j.2041-210X.2009.00001.x) DOI
Fitzpatrick MC, Sanders NJ, Ferrier S, Longino JT, Weiser MD, Dunn R. 2011. Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34, 836–847. (10.1111/j.1600-0587.2011.06653.x) DOI
Esposito LA, Bloom T, Caicedo-Quiroga L, Alicea-Serrano AM, Sánchez-Ruíz JA, May-Collado LJ, Binford GJ, Agnarsson I. 2015. Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Mol. Phylogenet. Evol. 93, 107–117. (10.1016/j.ympev.2015.07.005) PubMed DOI
Hedin M. 2015. High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Mol. Ecol. 24, 346–361. (10.1111/mec.13036) PubMed DOI
Eme D, et al. 2018. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436. (10.1111/ecog.02683) DOI
Qian H, Badgley C, Fox DL. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122. (10.1111/j.1466-8238.2008.00415.x) DOI
Gibert J, Deharveng L. 2002. Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52, 473–481. (10.1641/0006-3568(2002)052[0473:SEATFB]2.0.CO;2) DOI
Růžička V, Šmilauer P, Mlejnek R. 2013. Colonization of subterranean habitats by spiders in Central Europe . Int. J. Speleol. 42: 133–140. (10.5038/1827-806X.42.2.5) DOI
Mammola S, Goodacre SL, Isaia M. 2018. Climate change may drive cave spiders to extinction. Ecography 41, 233–243. (10.1111/ecog.02902) DOI
Sánchez-Fernández D, et al. 2018. The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 25, 1–7. (10.3897/subtbiol.25.23530) DOI
Mammola S, Piano E, Malard F, Vernon P, Isaia M. 2019. Extending Janzen's hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650. (10.1111/1365-2435.13382) DOI
Bregović P, Zagmajster M. 2016. Understanding hotspots within a global hotspot: identifying the drivers of regional species richness patterns in terrestrial subterranean habitats. Insect Conserv. Divers. 9, 268–281. (10.1111/icad.12164) DOI
Culver DC, Deharveng L, Bedos A, Lewis JJ, Madden M, Reddell JR, Sket B, Trontelj P, White D. 2006. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29, 120–128. (10.1111/j.2005.0906-7590.04435.x) DOI
Culver DC, Pipan T. 2014. Shallow subterranean habitats: ecology, evolution, and convervation. Oxford, UK: Oxford University Press.
Silva MS, Martins PR, Ferreira RL. 2011. Trophic dynamics in a Neotropical limestone cave. Subterr. Biol. 9, 127–138. (10.3897/subtbiol.9.2515) DOI
Giachino PM, Vailati D. 2010. The subterranean environment. Hypogean life, concepts and collecting techniques. Verona, Italy: WBA Handbooks.
Cardoso P. 2012. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94. (10.5038/1827-806X.41.1.9) DOI
Fiera C, Habel JC, Ulrich W. 2018. Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola). PLoS ONE 13, e0189638 (10.1371/journal.pone.0189638) PubMed DOI PMC
Fattorini S, Borges PAV, Fiasca B, Galassi DMP. 2016. Trapped in the web of water: groundwater-fed springs are island-like ecosystems for the meiofauna. Ecol. Evol. 6, 8389–8401. (10.1002/ece3.2535) PubMed DOI PMC
Pipan T, Culver DC, Papi F, Kozel P. 2018. Partitioning diversity in subterranean invertebrates: the epikarst fauna of Slovenia. PLoS ONE 13, e0195991 (10.1371/journal.pone.0195991) PubMed DOI PMC
Culver DC, Trontelj P, Zagmajster M, Pipan T. 2013. Paving the way for standardized and comparable subterranean biodiversity studies. Subterr. Biol. 10, 1–43. (10.3897/subtbiol.10.4759) DOI
Costello MJ, Horton T, Kroh A. 2018. Sustainable biodiversity databasing: international, collaborative, dynamic, centralised. Trends Ecol. Evol. 33, 803–805. (10.1016/j.tree.2018.08.006) PubMed DOI
Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae)