An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves (Salvia officinalis L.) on Germinated Plants of Maize (Zea mays L.)

. 2019 Oct 31 ; 9 (11) : . [epub] 20191031

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31683686

Grantová podpora
H2020 CA COST Action CA15114 EU

AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.

Zobrazit více v PubMed

Darroudi M., Sabouri Z., Oskuee R.K., Zak A.K., Kargar H., Hamid M.H.N.A. Green chemistry approach for the synthesis of zno nanopowders and their cytotoxic effects. Ceram. Int. 2014;40:4827–4831. doi: 10.1016/j.ceramint.2013.09.032. DOI

Zak A.K., Hashim A.M., Darroudi M. Optical properties of zno/baco 3 nanocomposites in uv and visible regions. Nanoscale Res. Lett. 2014;9:399. doi: 10.1186/1556-276X-9-399. PubMed DOI PMC

Yadav K., Giri M., Jaggi N. Synthesis, characterization and photocatalytic studies of znse and ag: Znse nanoparticles. Res. Chem. Intermed. 2015;41:9967–9978. doi: 10.1007/s11164-015-2002-9. DOI

Zamiri R., Zakaria A., Ahmad M.B., Sadrolhosseini A.R., Shameli K., Darroudi M., Mahdi M.A. Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension. Optik. 2011;122:836–838. doi: 10.1016/j.ijleo.2010.05.031. DOI

Zamiri R., Azmi B., Darroudi M., Sadrolhosseini A.R., Husin M., Zaidan A., Mahdi M. Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique. Appl. Phys. A. 2011;102:189–194. doi: 10.1007/s00339-010-6129-7. DOI

Fadeel B., Farcal L., Hardy B., Vazquez-Campos S., Hristozov D., Marcomini A., Lynch I., Valsami-Jones E., Alenius H., Savolainen K. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 2018;13:537–543. doi: 10.1038/s41565-018-0185-0. PubMed DOI

Manna I., Bandyopadhyay M. A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene. 2019;17:100167. doi: 10.1016/j.plgene.2018.100167. DOI

Joseph T., Morrison M. Nanotechnology in agriculture and food. Nanoforum Rep. 2006;2:2–3.

Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI

Priester J.H., Ge Y., Mielke R.E., Horst A.M., Moritz S.C., Espinosa K., Gelb J., Walker S.L., Nisbet R.M., An Y.-J., et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. USA. 2012;109:E2451–E2456. doi: 10.1073/pnas.1205431109. PubMed DOI PMC

Stavrinidou E., Gabrielsson R., Gomez E., Crispin X., Nilsson O., Simon D.T., Berggren M. Electronic plants. Sci. Adv. 2015;1:8. doi: 10.1126/sciadv.1501136. PubMed DOI PMC

Anjum N.A., Rodrigo M.A.M., Moulick A., Heger Z., Kopel P., Zitka O., Adam V., Lukatkin A.S., Duarte A.C., Pereira E., et al. Transport phenomena of nanoparticles in plants and animals/humans. Environ. Res. 2016;151:233–243. doi: 10.1016/j.envres.2016.07.018. PubMed DOI

Gardea-Torresdey J.L., Rico C.M., White J.C. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol. 2014;48:2526–2540. doi: 10.1021/es4050665. PubMed DOI

Siddiqi K.S., Husen A., Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018;16:28. doi: 10.1186/s12951-018-0334-5. PubMed DOI PMC

Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385. PubMed PMC

Darroudi M., KhandaKhandan Nasab N., Salimizand H., Dehnad A. Green synthesis and antibacterial activity of zinc selenide (znse) nanoparticles. Nanomed. J. 2019

Majeed S., Bakhtiar N.F.B., Danish M., Ibrahim M.M., Hashim R. Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast mg-63 and breast mcf-7 cancer cell lines. Sustain. Chem. Pharm. 2019;12:100138. doi: 10.1016/j.scp.2019.100138. DOI

Naik R.R., Stringer S.J., Agarwal G., Jones S.E., Stone M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002;1:169–172. doi: 10.1038/nmat758. PubMed DOI

Singh P., Kim Y.-J., Zhang D., Yang D.-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotech. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006. PubMed DOI

Bahlol H.S., Foda M.F., Ma J., Han H. Robust synthesis of size-dispersal triangular silver nanoprisms via chemical reduction route and their cytotoxicity. Nanomaterials. 2019;9:674. doi: 10.3390/nano9050674. PubMed DOI PMC

Ovais M., Khalil A.T., Raza A., Khan M.A., Ahmad I., Ul Islam N., Saravanan M., Ubaid M.F., Ali M., Shinwari Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine. 2016;11:21. doi: 10.2217/nnm-2016-0279. PubMed DOI

Sankar R., Rahman P.K.S.M., Varunkumar K., Anusha C., Kalaiarasi A., Shivashangari K.S., Ravikumar V. Facile synthesis of curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. J. Mol. Struct. 2017;1129:8–16. doi: 10.1016/j.molstruc.2016.09.054. DOI

Kumar A., Vemula P.K., Ajayan P.M., John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008;7:236–241. doi: 10.1038/nmat2099. PubMed DOI

Richter A.P., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Hubal E.A.C., Paunov V.N., Stoyanov S.D., Velev O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotech. 2015;10:817–831. doi: 10.1038/nnano.2015.141. PubMed DOI

Panacek A., Kvitek L., Smekalova M., Vecerova R., Kolar M., Roderova M., Dycka F., Sebela M., Prucek R., Tomanec O., et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018;13:65–71. doi: 10.1038/s41565-017-0013-y. PubMed DOI

Salehi S., Shandiz S.A.S., Ghanbar F., Darvish M.R., Ardestani M.S., Mirzaie A., Jafari M. Phytosynthesis of silver nanoparticles using artemisia marschalliana sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016;11:1835–1846. PubMed PMC

Dakshayani S.S., Marulasiddeshwara M.B., Sharath Kumar M.N., Ramesh G., Raghavendra Kumar P., Devaraja S., Rashmi H. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using selaginella (sanjeevini) plant extract. Int. J. Biol. Macromol. 2019;131:787–797. PubMed

Almeida L.M., Magno L.N., Pereira A.C., Guidelli E.J., Baffa O., Kinoshita A., Goncalves P.J. Toxicity of silver nanoparticles released by hancornia speciosa (mangabeira) biomembrane. Spectrochim. Acta Pt. A Mol. Biomol. Spectrosc. 2019;210:329–334. doi: 10.1016/j.saa.2018.11.050. PubMed DOI

Prakash A., Sharma S., Ahmad N., Ghosh A., Sinha P. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int. Res. J. Biotechnol. 2010;1:071–079.

Wiley B., Sun Y., Mayers B., Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005;11:454–463. doi: 10.1002/chem.200400927. PubMed DOI

Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., et al. Electroanalysis of plant thiols. Sensors. 2007;7:932–959. doi: 10.3390/s7060932. DOI

Ghosh M., Ghosh I., Godderis L., Hoet P., Mukherjee A. Genotoxicity of engineered nanoparticles in higher plants. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;842:132–145. doi: 10.1016/j.mrgentox.2019.01.002. PubMed DOI

Tolaymat T., Genaidy A., Abdelraheem W., Dionysiou D., Andersen C. The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Sci. Total Environ. 2017;579:93–106. doi: 10.1016/j.scitotenv.2016.10.229. PubMed DOI PMC

Zheng S.M., Zhou Q.X., Chen C.H., Yang F.X., Cai Z., Li D., Geng Q.J., Feng Y.M., Wang H.Q. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae chlorella vulgaris. Sci. Total Environ. 2019;660:1182–1190. doi: 10.1016/j.scitotenv.2019.01.067. PubMed DOI

Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI

Abdelsalam N.R., Kandil E.E., Al-Msari M.A.F., Al-Jaddadi M.A.M., Ali H.M., Salem M.Z.M., Elshikh M.S. Effect of foliar application of npk nanoparticle fertilization on yield and genotoxicity in wheat (triticum aestivum L.) Sci. Total. Environ. 2019;653:1128–1139. doi: 10.1016/j.scitotenv.2018.11.023. PubMed DOI

Zheng Y.L., Hou L.J., Liu M., Newell S.E., Yin G.Y., Yu C.D., Zhang H.L., Li X.F., Gao D.Z., Gao J., et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci. Adv. 2017;3:11. doi: 10.1126/sciadv.1603229. PubMed DOI PMC

Flores-Lopez L.Z., Espinoza-Gomez H., Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J. Appl. Toxicol. 2019;39:16–26. doi: 10.1002/jat.3654. PubMed DOI

Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., Yang P. Effect of nano-tio 2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005;105:269–279. doi: 10.1385/BTER:105:1-3:269. PubMed DOI

Krishnaraj C., Jagan E.G., Ramachandran R., Abirami S.M., Mohan N., Kalaichelvan P.T. Effect of biologically synthesized silver nanoparticles on bacopa monnieri (linn.) wettst. Plant growth metabolism. Process Biochem. 2012;47:651–658. doi: 10.1016/j.procbio.2012.01.006. DOI

Dayem A.A., Hossain M.K., Lee S.B., Kim K., Saha S.K., Yang G.M., Choi H.Y., Cho S.G. The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017;18:21. PubMed PMC

Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F., Biris A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–3227. doi: 10.1021/nn900887m. PubMed DOI

Kumari M., Mukherjee A., Chandrasekaran N. Genotoxicity of silver nanoparticles in allium cepa. Sci. Total Environ. 2009;407:5243–5246. doi: 10.1016/j.scitotenv.2009.06.024. PubMed DOI

Akter M., Sikder M.T., Rahman M.M., Ullah A.K.M.A., Hossain K.F.B., Banik S., Hosokawa T., Saito T., Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018;9:1–16. doi: 10.1016/j.jare.2017.10.008. PubMed DOI PMC

Scherer M.D., Sposito J.C., Falco W.F., Grisolia A.B., Andrade L.H., Lima S.M., Machado G., Nascimento V.A., Gonçalves D.A., Wender H. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019;660:459–467. doi: 10.1016/j.scitotenv.2018.12.444. PubMed DOI

Abdelsalam N.R., Fouda M.M.G., Abdel-Megeed A., Ajarem J., Allam A.A., El-Naggar M.E. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 2019;133:1008–1018. doi: 10.1016/j.ijbiomac.2019.04.134. PubMed DOI

Karami Mehrian S., De Lima R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. Environ. Nanotech. Monit. Manag. 2016;6:184–193. doi: 10.1016/j.enmm.2016.08.003. DOI

Sharifi-Rad M., Ozcelik B., Altin G., Daskaya-Dikmen C., Martorell M., Ramirez-Alarcon K., Alarcon-Zapata P., Morais-Braga M.F.B., Carneiro J.N.P., Leal A., et al. Salvia spp. Plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 2018;80:242–263. doi: 10.1016/j.tifs.2018.08.008. DOI

Jakovljevic M., Jokic S., Molnar M., Jasic M., Babic J., Jukic H., Banjari I. Bioactive profile of various salvia officinalis L. Preparations. Plants-Basel. 2019;8:30. doi: 10.3390/plants8030055. PubMed DOI PMC

Lu Y.R., Foo L.Y. Antioxidant activities of polyphenols from sage (salvia officinalis) Food Chem. 2001;75:197–202. doi: 10.1016/S0308-8146(01)00198-4. DOI

Wang M.F., Li J.G., Rangarajan M., Shao Y., LaVoie E.J., Huang T.C., Ho C.T. Antioxidative phenolic compounds from sage (salvia officinalis) J. Agric. Food Chem. 1998;46:4869–4873. doi: 10.1021/jf980614b. DOI

Er M., Tugay O., Ozcan M.M., Ulukus D., Al-Juhaimi F. Biochemical properties of some salvia L. Species. Environ. Monit. Assess. 2013;185:5193–5198. doi: 10.1007/s10661-012-2935-z. PubMed DOI

Howes M.J.R., Perry N.S.L., Houghton P.J. Plants with traditional uses and activities, relevant to the management of alzheimer’s disease and other cognitive disorders. Phytother. Res. 2003;17:1–18. doi: 10.1002/ptr.1280. PubMed DOI

Scholey A.B., Tildesley N.T.J., Ballard C.G., Wesnes K.A., Tasker A., Perry E.K., Kennedy D.O. An extract of salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology. 2008;198:127–139. doi: 10.1007/s00213-008-1101-3. PubMed DOI

Bozin B., Mlmica-Dukic N., Samojlik I., Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (rosmarinus officinalis L. And salvia officinalis L., lamiaceae) essential oils. J. Agric. Food Chem. 2007;55:7879–7885. doi: 10.1021/jf0715323. PubMed DOI

Moghadam S.B., Masoudi R., Monsefi M. Salvia officinalis induces apoptosis in mammary carcinoma cells through alteration of bax to bcl-2 ratio. Iran. J. Sci. Technol. Trans. A Sci. 2018;42:297–303. doi: 10.1007/s40995-018-0496-x. DOI

Pei J.W., Fu B.F., Jiang L.F., Sun T.Z. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using coptis chinensis. Int. J. Nanomed. 2019;14:1969–1978. doi: 10.2147/IJN.S188235. PubMed DOI PMC

Zhamanbayeva G.T., Aralbayeva A.N., Murzakhmetova M.K., Tuleukhanov S.T., Danilenko M. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells. Biomed. Pharmacother. 2016;82:80–89. doi: 10.1016/j.biopha.2016.04.062. PubMed DOI

Bekut M., Brkic S., Kladar N., Dragovic G., Gavaric N., Bozin B. Potential of selected lamiaceae plants in anti(retro)viral therapy. Pharmacol. Res. 2018;133:301–314. doi: 10.1016/j.phrs.2017.12.016. PubMed DOI PMC

Roby M.H.H., Sarhan M.A., Selim K.A.H., Khalel K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (thymus vulgaris L.), sage (salvia officinalis L.), and marjoram (origanum majorana L.) extracts. Ind. Crop. Prod. 2013;43:827–831. doi: 10.1016/j.indcrop.2012.08.029. DOI

Ruttkay-Nedecky B., Skalickova S., Kepinska M., Cihalova K., Docekalova M., Stankova M., Uhlirova D., Fernandez C., Sochor J., Milnerowicz H., et al. Development of new silver nanoparticles suitable for materials with antimicrobial properties. J. Nanosci. Nanotechnol. 2019;19:2762–2769. doi: 10.1166/jnn.2019.15867. PubMed DOI

Almaghrabi O.A. Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Sci. J. 2012;9:590–598.

Klejdus B., Zehnalek J., Adam V., Petrek J., Kizek R., Vacek J., Trnkova L., Rozik R., Havel L., Kuban V. Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (zea mays L.) kernels exposed to cadmium. Anal. Chim. Acta. 2004;520:117–124. doi: 10.1016/j.aca.2004.02.060. DOI

Kizek R., Vacek J., Trnkova L., Klejdus B., Kuban V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy. 2003;97:1003–1006.

Mikulaskova H., Merlos M.A.R., Zitka O., Kominkova M., Hynek D., Adam V., Beklova M., Kizek R. Employment of electrochemical methods for assessment of the maize (zea mays L.) and pea (pisum sativum L.) response to treatment with platinum(iv) Int. J. Electrochem. Sci. 2013;8:4505–4519.

Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI

Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC

Bibi G., Haq I., Ullah N., Muazzam A.G., Mannan A., Mirza B. Phytochemical evaluation of naturally growing aster tomsonii plant species. IJPIS J. Pharmacogn. Herb. Form. 2012;2:33–39.

Cox A., Venkatachalam P., Sahi S., Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2016;107:147–163. doi: 10.1016/j.plaphy.2016.05.022. PubMed DOI

Ma X., Yan J. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr. Opin. Environ. Sci. Health. 2018;6:16–20. doi: 10.1016/j.coesh.2018.07.008. DOI

Shrivastava M., Srivastav A., Gandhi S., Rao S., Roychoudhury A., Kumar A., Singhal R.K., Jha S.K., Singh S.D. Monitoring of engineered nanoparticles in soil-plant system: A review. Environ. Nanotech. Monit. Manag. 2019;11:100218. doi: 10.1016/j.enmm.2019.100218. DOI

Hochella M.F., Lower S.K., Maurice P.A., Penn R.L., Sahai N., Sparks D.L., Twining B.S. Nanominerals, mineral nanoparticles, and earth systems. Science. 2008;319:1631–1635. doi: 10.1126/science.1141134. PubMed DOI

Bhor G., Maskare S., Hinge S., Singh L., Nalwade A. Synthesis of silver nanoparticles using leaflet extract of nephrolepi sexaltata L. And evaluation antibacterial activity against human and plant pathogenic bacteria. Asian J. Pharm. Technol. Innov. 2014;2:6.

Gargulak M., Strofova N., Sehnal K., Hosnedlova B., Docekalova M., Ofomaja A.E., Fernandez C., Kepinska M., Milnerowicz, Kizek R. Phytotoxicity of silver nanoparticles (agnps) prepared by green synthesis using sage leaves (salvia officinalis) 978-1-5386-5619-8IEEE Malaysia. 2019 in press.

Doody M.A., Wang D.J., Bais H.P., Jin Y. Differential antimicrobial activity of silver nanoparticles to bacteria bacillus subtilis and escherichia coli, and toxicity to crop plant zea mays and beneficial b. Subtilis-inoculated z. Mays. J. Nanopart. Res. 2016;18:19. doi: 10.1007/s11051-016-3602-z. DOI

Dent M., Dragovic-Uzelac V., Penic M., Brncic M., Bosiljkov T., Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013;51:84–91.

Akkol E.K., Göger F., Koşar M., Başer K.H.C. Phenolic composition and biological activities of salvia halophila and salvia virgata from turkey. Food Chem. 2008;108:942–949. doi: 10.1016/j.foodchem.2007.11.071. PubMed DOI

Thomas B., Vithiya B.S.M., Prasad T.A.A., Mohamed S.B., Magdalane C.M., Kaviyarasu K., Maaza M. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using passiflora edulis f. Flavicarpa. J. Nanosci. Nanotechnol. 2019;19:2640–2648. doi: 10.1166/jnn.2019.16025. PubMed DOI

Baharara J., Ramezani T., Mousavi M., Asadi-Samani M. Antioxidant and anti-inflammatory activity of green synthesized silver nanoparticles using salvia officinalis extract. Ann. Trop. Med. PH. 2017;10:1265.

Zhang K., Liu X., Samuel Ravi S.O.A., Ramachandran A., Aziz Ibrahim I.A., Nassir A.M., Yao J. Synthesis of silver nanoparticles (agnps) from leaf extract of salvia miltiorrhiza and its anticancer potential in human prostate cancer lncap cell lines. Artif. Cells Nanomed. Biotechnol. 2019;47:2846–2854. doi: 10.1080/21691401.2019.1638792. PubMed DOI

Tripathi D.K., Tripathi A., Shweta , Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017;8:7. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC

Orosa-Puente B., Leftley N., Von Wangenheim D., Banda J., Srivastava A.K., Hill K., Truskina J., Bhosale R., Morris E., Srivastava M., et al. Root branching toward water involves posttranslational modification of transcription factor arf7. Science. 2018;362:1407–1410. doi: 10.1126/science.aau3956. PubMed DOI

Giehl R.F.H., von Wiren N. Hydropatterning-how roots test the waters. Science. 2018;362:1358–1359. doi: 10.1126/science.aav9375. PubMed DOI

Nair P.M.G., Chung I.M. Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (vigna radiata L.) Acta Physiol. Plant. 2015;37:11. doi: 10.1007/s11738-014-1719-1. DOI

Wiechen M., Zaharieva I., Dau H., Kurz P. Layered manganese oxides for water-oxidation: Alkaline earth cations influence catalytic activity in a photosystem ii-like fashion. Chem. Sci. 2012;3:2330–2339. doi: 10.1039/c2sc20226c. DOI

Thangavelu R.M., Gunasekaran D., Jesse M.I., Riyaz S.U.M., Sundarajan D., Krishnan K. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture—An in vitro and ex vitro study. Arab. J. Chem. 2018;11:48–61. doi: 10.1016/j.arabjc.2016.09.022. DOI

Almutairi Z.M., Alharbi A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 2015;4:283–288. doi: 10.24297/jaa.v4i1.4295. DOI

Zheng L., Hong F.S., Lu S.P., Liu C. Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol. Trace Elem. Res. 2005;104:83–91. doi: 10.1385/BTER:104:1:083. PubMed DOI

Mehta C., Srivastava R., Arora S., Sharma A. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:254. PubMed PMC

Tripathi A., Liu S., Singh P.K., Kumar N., Pandey A.C., Tripathi D.K., Chauhan D.K., Sahi S. Differential phytotoxic responses of silver nitrate (agno3) and silver nanoparticle (agnps) in cucumis sativus L. Plant Gene. 2017;11:255–264. doi: 10.1016/j.plgene.2017.07.005. DOI

Yin J.-J., Liu J., Ehrenshaft M., Roberts J.E., Fu P.P., Mason R.P., Zhao B. Phototoxicity of nano titanium dioxides in hacat keratinocytes—generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 2012;263:81–88. doi: 10.1016/j.taap.2012.06.001. PubMed DOI PMC

Yin L., Colman B.P., McGill B.M., Wright J.P., Bernhardt E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE. 2012;7:e47674. doi: 10.1371/journal.pone.0047674. PubMed DOI PMC

Yang J., Jiang F., Ma C., Rui Y., Rui M., Adeel M., Cao W., Xing B. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J. Agric. Food Chem. 2018;66:2589–2597. doi: 10.1021/acs.jafc.7b04904. PubMed DOI

Dietz K.-J., Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582–589. doi: 10.1016/j.tplants.2011.08.003. PubMed DOI

Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plant cells. Science. 1979;205:1144–1147. doi: 10.1126/science.205.4411.1144. PubMed DOI

Arnaout C.L., Gunsch C.K. Impacts of silver nanoparticle coating on the nitrification potential of nitrosomonas europaea. Environ. Sci. Technol. 2012;46:5387–5395. doi: 10.1021/es204540z. PubMed DOI

Wang X., Yang X., Chen S., Li Q., Wang W., Hou C., Gao X., Wang L., Wang S. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front. Plant. Sci. 2016;6:1243. doi: 10.3389/fpls.2015.01243. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Silver Nanomaterials for Wound Dressing Applications

. 2020 Aug 28 ; 12 (9) : . [epub] 20200828

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace