An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves (Salvia officinalis L.) on Germinated Plants of Maize (Zea mays L.)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
H2020 CA COST Action CA15114
EU
PubMed
31683686
PubMed Central
PMC6915364
DOI
10.3390/nano9111550
PII: nano9111550
Knihovny.cz E-zdroje
- Klíčová slova
- green synthesis, phyto-nanotechnology, phytotoxicity, plant physiology, thiol compounds,
- Publikační typ
- časopisecké články MeSH
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Zobrazit více v PubMed
Darroudi M., Sabouri Z., Oskuee R.K., Zak A.K., Kargar H., Hamid M.H.N.A. Green chemistry approach for the synthesis of zno nanopowders and their cytotoxic effects. Ceram. Int. 2014;40:4827–4831. doi: 10.1016/j.ceramint.2013.09.032. DOI
Zak A.K., Hashim A.M., Darroudi M. Optical properties of zno/baco 3 nanocomposites in uv and visible regions. Nanoscale Res. Lett. 2014;9:399. doi: 10.1186/1556-276X-9-399. PubMed DOI PMC
Yadav K., Giri M., Jaggi N. Synthesis, characterization and photocatalytic studies of znse and ag: Znse nanoparticles. Res. Chem. Intermed. 2015;41:9967–9978. doi: 10.1007/s11164-015-2002-9. DOI
Zamiri R., Zakaria A., Ahmad M.B., Sadrolhosseini A.R., Shameli K., Darroudi M., Mahdi M.A. Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension. Optik. 2011;122:836–838. doi: 10.1016/j.ijleo.2010.05.031. DOI
Zamiri R., Azmi B., Darroudi M., Sadrolhosseini A.R., Husin M., Zaidan A., Mahdi M. Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique. Appl. Phys. A. 2011;102:189–194. doi: 10.1007/s00339-010-6129-7. DOI
Fadeel B., Farcal L., Hardy B., Vazquez-Campos S., Hristozov D., Marcomini A., Lynch I., Valsami-Jones E., Alenius H., Savolainen K. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 2018;13:537–543. doi: 10.1038/s41565-018-0185-0. PubMed DOI
Manna I., Bandyopadhyay M. A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene. 2019;17:100167. doi: 10.1016/j.plgene.2018.100167. DOI
Joseph T., Morrison M. Nanotechnology in agriculture and food. Nanoforum Rep. 2006;2:2–3.
Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Priester J.H., Ge Y., Mielke R.E., Horst A.M., Moritz S.C., Espinosa K., Gelb J., Walker S.L., Nisbet R.M., An Y.-J., et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. USA. 2012;109:E2451–E2456. doi: 10.1073/pnas.1205431109. PubMed DOI PMC
Stavrinidou E., Gabrielsson R., Gomez E., Crispin X., Nilsson O., Simon D.T., Berggren M. Electronic plants. Sci. Adv. 2015;1:8. doi: 10.1126/sciadv.1501136. PubMed DOI PMC
Anjum N.A., Rodrigo M.A.M., Moulick A., Heger Z., Kopel P., Zitka O., Adam V., Lukatkin A.S., Duarte A.C., Pereira E., et al. Transport phenomena of nanoparticles in plants and animals/humans. Environ. Res. 2016;151:233–243. doi: 10.1016/j.envres.2016.07.018. PubMed DOI
Gardea-Torresdey J.L., Rico C.M., White J.C. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol. 2014;48:2526–2540. doi: 10.1021/es4050665. PubMed DOI
Siddiqi K.S., Husen A., Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018;16:28. doi: 10.1186/s12951-018-0334-5. PubMed DOI PMC
Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385. PubMed PMC
Darroudi M., KhandaKhandan Nasab N., Salimizand H., Dehnad A. Green synthesis and antibacterial activity of zinc selenide (znse) nanoparticles. Nanomed. J. 2019
Majeed S., Bakhtiar N.F.B., Danish M., Ibrahim M.M., Hashim R. Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast mg-63 and breast mcf-7 cancer cell lines. Sustain. Chem. Pharm. 2019;12:100138. doi: 10.1016/j.scp.2019.100138. DOI
Naik R.R., Stringer S.J., Agarwal G., Jones S.E., Stone M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002;1:169–172. doi: 10.1038/nmat758. PubMed DOI
Singh P., Kim Y.-J., Zhang D., Yang D.-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotech. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006. PubMed DOI
Bahlol H.S., Foda M.F., Ma J., Han H. Robust synthesis of size-dispersal triangular silver nanoprisms via chemical reduction route and their cytotoxicity. Nanomaterials. 2019;9:674. doi: 10.3390/nano9050674. PubMed DOI PMC
Ovais M., Khalil A.T., Raza A., Khan M.A., Ahmad I., Ul Islam N., Saravanan M., Ubaid M.F., Ali M., Shinwari Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine. 2016;11:21. doi: 10.2217/nnm-2016-0279. PubMed DOI
Sankar R., Rahman P.K.S.M., Varunkumar K., Anusha C., Kalaiarasi A., Shivashangari K.S., Ravikumar V. Facile synthesis of curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. J. Mol. Struct. 2017;1129:8–16. doi: 10.1016/j.molstruc.2016.09.054. DOI
Kumar A., Vemula P.K., Ajayan P.M., John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008;7:236–241. doi: 10.1038/nmat2099. PubMed DOI
Richter A.P., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Hubal E.A.C., Paunov V.N., Stoyanov S.D., Velev O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotech. 2015;10:817–831. doi: 10.1038/nnano.2015.141. PubMed DOI
Panacek A., Kvitek L., Smekalova M., Vecerova R., Kolar M., Roderova M., Dycka F., Sebela M., Prucek R., Tomanec O., et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018;13:65–71. doi: 10.1038/s41565-017-0013-y. PubMed DOI
Salehi S., Shandiz S.A.S., Ghanbar F., Darvish M.R., Ardestani M.S., Mirzaie A., Jafari M. Phytosynthesis of silver nanoparticles using artemisia marschalliana sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016;11:1835–1846. PubMed PMC
Dakshayani S.S., Marulasiddeshwara M.B., Sharath Kumar M.N., Ramesh G., Raghavendra Kumar P., Devaraja S., Rashmi H. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using selaginella (sanjeevini) plant extract. Int. J. Biol. Macromol. 2019;131:787–797. PubMed
Almeida L.M., Magno L.N., Pereira A.C., Guidelli E.J., Baffa O., Kinoshita A., Goncalves P.J. Toxicity of silver nanoparticles released by hancornia speciosa (mangabeira) biomembrane. Spectrochim. Acta Pt. A Mol. Biomol. Spectrosc. 2019;210:329–334. doi: 10.1016/j.saa.2018.11.050. PubMed DOI
Prakash A., Sharma S., Ahmad N., Ghosh A., Sinha P. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int. Res. J. Biotechnol. 2010;1:071–079.
Wiley B., Sun Y., Mayers B., Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005;11:454–463. doi: 10.1002/chem.200400927. PubMed DOI
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., et al. Electroanalysis of plant thiols. Sensors. 2007;7:932–959. doi: 10.3390/s7060932. DOI
Ghosh M., Ghosh I., Godderis L., Hoet P., Mukherjee A. Genotoxicity of engineered nanoparticles in higher plants. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;842:132–145. doi: 10.1016/j.mrgentox.2019.01.002. PubMed DOI
Tolaymat T., Genaidy A., Abdelraheem W., Dionysiou D., Andersen C. The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Sci. Total Environ. 2017;579:93–106. doi: 10.1016/j.scitotenv.2016.10.229. PubMed DOI PMC
Zheng S.M., Zhou Q.X., Chen C.H., Yang F.X., Cai Z., Li D., Geng Q.J., Feng Y.M., Wang H.Q. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae chlorella vulgaris. Sci. Total Environ. 2019;660:1182–1190. doi: 10.1016/j.scitotenv.2019.01.067. PubMed DOI
Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI
Abdelsalam N.R., Kandil E.E., Al-Msari M.A.F., Al-Jaddadi M.A.M., Ali H.M., Salem M.Z.M., Elshikh M.S. Effect of foliar application of npk nanoparticle fertilization on yield and genotoxicity in wheat (triticum aestivum L.) Sci. Total. Environ. 2019;653:1128–1139. doi: 10.1016/j.scitotenv.2018.11.023. PubMed DOI
Zheng Y.L., Hou L.J., Liu M., Newell S.E., Yin G.Y., Yu C.D., Zhang H.L., Li X.F., Gao D.Z., Gao J., et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci. Adv. 2017;3:11. doi: 10.1126/sciadv.1603229. PubMed DOI PMC
Flores-Lopez L.Z., Espinoza-Gomez H., Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J. Appl. Toxicol. 2019;39:16–26. doi: 10.1002/jat.3654. PubMed DOI
Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., Yang P. Effect of nano-tio 2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005;105:269–279. doi: 10.1385/BTER:105:1-3:269. PubMed DOI
Krishnaraj C., Jagan E.G., Ramachandran R., Abirami S.M., Mohan N., Kalaichelvan P.T. Effect of biologically synthesized silver nanoparticles on bacopa monnieri (linn.) wettst. Plant growth metabolism. Process Biochem. 2012;47:651–658. doi: 10.1016/j.procbio.2012.01.006. DOI
Dayem A.A., Hossain M.K., Lee S.B., Kim K., Saha S.K., Yang G.M., Choi H.Y., Cho S.G. The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017;18:21. PubMed PMC
Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F., Biris A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–3227. doi: 10.1021/nn900887m. PubMed DOI
Kumari M., Mukherjee A., Chandrasekaran N. Genotoxicity of silver nanoparticles in allium cepa. Sci. Total Environ. 2009;407:5243–5246. doi: 10.1016/j.scitotenv.2009.06.024. PubMed DOI
Akter M., Sikder M.T., Rahman M.M., Ullah A.K.M.A., Hossain K.F.B., Banik S., Hosokawa T., Saito T., Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018;9:1–16. doi: 10.1016/j.jare.2017.10.008. PubMed DOI PMC
Scherer M.D., Sposito J.C., Falco W.F., Grisolia A.B., Andrade L.H., Lima S.M., Machado G., Nascimento V.A., Gonçalves D.A., Wender H. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019;660:459–467. doi: 10.1016/j.scitotenv.2018.12.444. PubMed DOI
Abdelsalam N.R., Fouda M.M.G., Abdel-Megeed A., Ajarem J., Allam A.A., El-Naggar M.E. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 2019;133:1008–1018. doi: 10.1016/j.ijbiomac.2019.04.134. PubMed DOI
Karami Mehrian S., De Lima R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. Environ. Nanotech. Monit. Manag. 2016;6:184–193. doi: 10.1016/j.enmm.2016.08.003. DOI
Sharifi-Rad M., Ozcelik B., Altin G., Daskaya-Dikmen C., Martorell M., Ramirez-Alarcon K., Alarcon-Zapata P., Morais-Braga M.F.B., Carneiro J.N.P., Leal A., et al. Salvia spp. Plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 2018;80:242–263. doi: 10.1016/j.tifs.2018.08.008. DOI
Jakovljevic M., Jokic S., Molnar M., Jasic M., Babic J., Jukic H., Banjari I. Bioactive profile of various salvia officinalis L. Preparations. Plants-Basel. 2019;8:30. doi: 10.3390/plants8030055. PubMed DOI PMC
Lu Y.R., Foo L.Y. Antioxidant activities of polyphenols from sage (salvia officinalis) Food Chem. 2001;75:197–202. doi: 10.1016/S0308-8146(01)00198-4. DOI
Wang M.F., Li J.G., Rangarajan M., Shao Y., LaVoie E.J., Huang T.C., Ho C.T. Antioxidative phenolic compounds from sage (salvia officinalis) J. Agric. Food Chem. 1998;46:4869–4873. doi: 10.1021/jf980614b. DOI
Er M., Tugay O., Ozcan M.M., Ulukus D., Al-Juhaimi F. Biochemical properties of some salvia L. Species. Environ. Monit. Assess. 2013;185:5193–5198. doi: 10.1007/s10661-012-2935-z. PubMed DOI
Howes M.J.R., Perry N.S.L., Houghton P.J. Plants with traditional uses and activities, relevant to the management of alzheimer’s disease and other cognitive disorders. Phytother. Res. 2003;17:1–18. doi: 10.1002/ptr.1280. PubMed DOI
Scholey A.B., Tildesley N.T.J., Ballard C.G., Wesnes K.A., Tasker A., Perry E.K., Kennedy D.O. An extract of salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology. 2008;198:127–139. doi: 10.1007/s00213-008-1101-3. PubMed DOI
Bozin B., Mlmica-Dukic N., Samojlik I., Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (rosmarinus officinalis L. And salvia officinalis L., lamiaceae) essential oils. J. Agric. Food Chem. 2007;55:7879–7885. doi: 10.1021/jf0715323. PubMed DOI
Moghadam S.B., Masoudi R., Monsefi M. Salvia officinalis induces apoptosis in mammary carcinoma cells through alteration of bax to bcl-2 ratio. Iran. J. Sci. Technol. Trans. A Sci. 2018;42:297–303. doi: 10.1007/s40995-018-0496-x. DOI
Pei J.W., Fu B.F., Jiang L.F., Sun T.Z. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using coptis chinensis. Int. J. Nanomed. 2019;14:1969–1978. doi: 10.2147/IJN.S188235. PubMed DOI PMC
Zhamanbayeva G.T., Aralbayeva A.N., Murzakhmetova M.K., Tuleukhanov S.T., Danilenko M. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells. Biomed. Pharmacother. 2016;82:80–89. doi: 10.1016/j.biopha.2016.04.062. PubMed DOI
Bekut M., Brkic S., Kladar N., Dragovic G., Gavaric N., Bozin B. Potential of selected lamiaceae plants in anti(retro)viral therapy. Pharmacol. Res. 2018;133:301–314. doi: 10.1016/j.phrs.2017.12.016. PubMed DOI PMC
Roby M.H.H., Sarhan M.A., Selim K.A.H., Khalel K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (thymus vulgaris L.), sage (salvia officinalis L.), and marjoram (origanum majorana L.) extracts. Ind. Crop. Prod. 2013;43:827–831. doi: 10.1016/j.indcrop.2012.08.029. DOI
Ruttkay-Nedecky B., Skalickova S., Kepinska M., Cihalova K., Docekalova M., Stankova M., Uhlirova D., Fernandez C., Sochor J., Milnerowicz H., et al. Development of new silver nanoparticles suitable for materials with antimicrobial properties. J. Nanosci. Nanotechnol. 2019;19:2762–2769. doi: 10.1166/jnn.2019.15867. PubMed DOI
Almaghrabi O.A. Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Sci. J. 2012;9:590–598.
Klejdus B., Zehnalek J., Adam V., Petrek J., Kizek R., Vacek J., Trnkova L., Rozik R., Havel L., Kuban V. Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (zea mays L.) kernels exposed to cadmium. Anal. Chim. Acta. 2004;520:117–124. doi: 10.1016/j.aca.2004.02.060. DOI
Kizek R., Vacek J., Trnkova L., Klejdus B., Kuban V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy. 2003;97:1003–1006.
Mikulaskova H., Merlos M.A.R., Zitka O., Kominkova M., Hynek D., Adam V., Beklova M., Kizek R. Employment of electrochemical methods for assessment of the maize (zea mays L.) and pea (pisum sativum L.) response to treatment with platinum(iv) Int. J. Electrochem. Sci. 2013;8:4505–4519.
Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI
Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC
Bibi G., Haq I., Ullah N., Muazzam A.G., Mannan A., Mirza B. Phytochemical evaluation of naturally growing aster tomsonii plant species. IJPIS J. Pharmacogn. Herb. Form. 2012;2:33–39.
Cox A., Venkatachalam P., Sahi S., Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2016;107:147–163. doi: 10.1016/j.plaphy.2016.05.022. PubMed DOI
Ma X., Yan J. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr. Opin. Environ. Sci. Health. 2018;6:16–20. doi: 10.1016/j.coesh.2018.07.008. DOI
Shrivastava M., Srivastav A., Gandhi S., Rao S., Roychoudhury A., Kumar A., Singhal R.K., Jha S.K., Singh S.D. Monitoring of engineered nanoparticles in soil-plant system: A review. Environ. Nanotech. Monit. Manag. 2019;11:100218. doi: 10.1016/j.enmm.2019.100218. DOI
Hochella M.F., Lower S.K., Maurice P.A., Penn R.L., Sahai N., Sparks D.L., Twining B.S. Nanominerals, mineral nanoparticles, and earth systems. Science. 2008;319:1631–1635. doi: 10.1126/science.1141134. PubMed DOI
Bhor G., Maskare S., Hinge S., Singh L., Nalwade A. Synthesis of silver nanoparticles using leaflet extract of nephrolepi sexaltata L. And evaluation antibacterial activity against human and plant pathogenic bacteria. Asian J. Pharm. Technol. Innov. 2014;2:6.
Gargulak M., Strofova N., Sehnal K., Hosnedlova B., Docekalova M., Ofomaja A.E., Fernandez C., Kepinska M., Milnerowicz, Kizek R. Phytotoxicity of silver nanoparticles (agnps) prepared by green synthesis using sage leaves (salvia officinalis) 978-1-5386-5619-8IEEE Malaysia. 2019 in press.
Doody M.A., Wang D.J., Bais H.P., Jin Y. Differential antimicrobial activity of silver nanoparticles to bacteria bacillus subtilis and escherichia coli, and toxicity to crop plant zea mays and beneficial b. Subtilis-inoculated z. Mays. J. Nanopart. Res. 2016;18:19. doi: 10.1007/s11051-016-3602-z. DOI
Dent M., Dragovic-Uzelac V., Penic M., Brncic M., Bosiljkov T., Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013;51:84–91.
Akkol E.K., Göger F., Koşar M., Başer K.H.C. Phenolic composition and biological activities of salvia halophila and salvia virgata from turkey. Food Chem. 2008;108:942–949. doi: 10.1016/j.foodchem.2007.11.071. PubMed DOI
Thomas B., Vithiya B.S.M., Prasad T.A.A., Mohamed S.B., Magdalane C.M., Kaviyarasu K., Maaza M. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using passiflora edulis f. Flavicarpa. J. Nanosci. Nanotechnol. 2019;19:2640–2648. doi: 10.1166/jnn.2019.16025. PubMed DOI
Baharara J., Ramezani T., Mousavi M., Asadi-Samani M. Antioxidant and anti-inflammatory activity of green synthesized silver nanoparticles using salvia officinalis extract. Ann. Trop. Med. PH. 2017;10:1265.
Zhang K., Liu X., Samuel Ravi S.O.A., Ramachandran A., Aziz Ibrahim I.A., Nassir A.M., Yao J. Synthesis of silver nanoparticles (agnps) from leaf extract of salvia miltiorrhiza and its anticancer potential in human prostate cancer lncap cell lines. Artif. Cells Nanomed. Biotechnol. 2019;47:2846–2854. doi: 10.1080/21691401.2019.1638792. PubMed DOI
Tripathi D.K., Tripathi A., Shweta , Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017;8:7. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC
Orosa-Puente B., Leftley N., Von Wangenheim D., Banda J., Srivastava A.K., Hill K., Truskina J., Bhosale R., Morris E., Srivastava M., et al. Root branching toward water involves posttranslational modification of transcription factor arf7. Science. 2018;362:1407–1410. doi: 10.1126/science.aau3956. PubMed DOI
Giehl R.F.H., von Wiren N. Hydropatterning-how roots test the waters. Science. 2018;362:1358–1359. doi: 10.1126/science.aav9375. PubMed DOI
Nair P.M.G., Chung I.M. Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (vigna radiata L.) Acta Physiol. Plant. 2015;37:11. doi: 10.1007/s11738-014-1719-1. DOI
Wiechen M., Zaharieva I., Dau H., Kurz P. Layered manganese oxides for water-oxidation: Alkaline earth cations influence catalytic activity in a photosystem ii-like fashion. Chem. Sci. 2012;3:2330–2339. doi: 10.1039/c2sc20226c. DOI
Thangavelu R.M., Gunasekaran D., Jesse M.I., Riyaz S.U.M., Sundarajan D., Krishnan K. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture—An in vitro and ex vitro study. Arab. J. Chem. 2018;11:48–61. doi: 10.1016/j.arabjc.2016.09.022. DOI
Almutairi Z.M., Alharbi A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 2015;4:283–288. doi: 10.24297/jaa.v4i1.4295. DOI
Zheng L., Hong F.S., Lu S.P., Liu C. Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol. Trace Elem. Res. 2005;104:83–91. doi: 10.1385/BTER:104:1:083. PubMed DOI
Mehta C., Srivastava R., Arora S., Sharma A. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:254. PubMed PMC
Tripathi A., Liu S., Singh P.K., Kumar N., Pandey A.C., Tripathi D.K., Chauhan D.K., Sahi S. Differential phytotoxic responses of silver nitrate (agno3) and silver nanoparticle (agnps) in cucumis sativus L. Plant Gene. 2017;11:255–264. doi: 10.1016/j.plgene.2017.07.005. DOI
Yin J.-J., Liu J., Ehrenshaft M., Roberts J.E., Fu P.P., Mason R.P., Zhao B. Phototoxicity of nano titanium dioxides in hacat keratinocytes—generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 2012;263:81–88. doi: 10.1016/j.taap.2012.06.001. PubMed DOI PMC
Yin L., Colman B.P., McGill B.M., Wright J.P., Bernhardt E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE. 2012;7:e47674. doi: 10.1371/journal.pone.0047674. PubMed DOI PMC
Yang J., Jiang F., Ma C., Rui Y., Rui M., Adeel M., Cao W., Xing B. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J. Agric. Food Chem. 2018;66:2589–2597. doi: 10.1021/acs.jafc.7b04904. PubMed DOI
Dietz K.-J., Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582–589. doi: 10.1016/j.tplants.2011.08.003. PubMed DOI
Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plant cells. Science. 1979;205:1144–1147. doi: 10.1126/science.205.4411.1144. PubMed DOI
Arnaout C.L., Gunsch C.K. Impacts of silver nanoparticle coating on the nitrification potential of nitrosomonas europaea. Environ. Sci. Technol. 2012;46:5387–5395. doi: 10.1021/es204540z. PubMed DOI
Wang X., Yang X., Chen S., Li Q., Wang W., Hou C., Gao X., Wang L., Wang S. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front. Plant. Sci. 2016;6:1243. doi: 10.3389/fpls.2015.01243. PubMed DOI PMC