Synthesis of β-d-galactopyranoside-Presenting Glycoclusters, Investigation of Their Interactions with Pseudomonas aeruginosa Lectin A (PA-IL) and Evaluation of Their Anti-Adhesion Potential
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31683947
PubMed Central
PMC6920806
DOI
10.3390/biom9110686
PII: biom9110686
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, cystic fibrosis, d-galactosides, lectin, multivalency,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- bakteriální adheze účinky léků MeSH
- bakteriální proteiny genetika metabolismus MeSH
- galaktosa chemická syntéza chemie farmakologie MeSH
- lektiny genetika metabolismus MeSH
- lidé MeSH
- pseudomonádové infekce mikrobiologie MeSH
- Pseudomonas aeruginosa účinky léků genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- galaktosa MeSH
- lektiny MeSH
Pseudomonas aeruginosa is an opportunistic human pathogen associated with cystic fibrosis. This bacterium produces, among other virulence factors, a soluble d-galactose-specific lectin PA-IL (LecA). PA-IL plays an important role in the adhesion to the host cells and is also cytotoxic. Therefore, this protein is an interesting therapeutic target, suitable for inhibition by carbohydrate-based compounds. In the current study, β-d-galactopyranoside-containing tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol equipped with propargyl groups were chosen as multivalent scaffolds and the galactoclusters were built from the above-mentioned cores by coupling ethylene or tetraethylene glycol-bridges and peracetylated propargyl β-d-galactosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between galactoside derivatives and PA-IL was investigated by several biophysical methods, including hemagglutination inhibition assay, isothermal titration calorimetry, analytical ultracentrifugation, and surface plasmon resonance. Their ability to inhibit the adhesion of P. aeruginosa to bronchial cells was determined by ex vivo assay. The newly synthesized multivalent galactoclusters proved to be significantly better ligands than simple d-galactose for lectin PA-IL and as a result, two representatives of the dendrimers were able to decrease adhesion of P. aeruginosa to bronchial cells to approximately 32% and 42%, respectively. The results may provide an opportunity to develop anti-adhesion therapy for the treatment of P. aeruginosa infection.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1 H 4032 Debrecen Hungary
Zobrazit více v PubMed
Sharon N., Lis H. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI
Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta. 2006;1760:527–537. doi: 10.1016/j.bbagen.2005.12.008. PubMed DOI
Cecioni S., Imberty A., Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI
Folkesson A., Jelsbak L., Yang L., Johansen H.K., Ciofu O., Høiby N., Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012;10:841–851. doi: 10.1038/nrmicro2907. PubMed DOI
Gilboa-Garber N. Inhibition of broad spectrum hemagglutinin from Pseudomonas aeruginosa by D-galactose and its derivatives. FEBS Lett. 1972;20:242–244. doi: 10.1016/0014-5793(72)80805-6. PubMed DOI
Gilboa-Garber N. Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim. Biophys. Acta. 1972;273:165–173. doi: 10.1016/0304-4165(72)90204-8. PubMed DOI
Cioci G., Mitchell E.P., Gautier C., Wimmerová M., Sudakevitz D., Pérez S., Gilboa-Garber N., Imberty A. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 2003;555:297–301. doi: 10.1016/S0014-5793(03)01249-3. PubMed DOI
Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC
Diggle S.P., Stacey R.E., Dodd C., Cámara M., Williams P., Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006;8:1095–1104. doi: 10.1111/j.1462-2920.2006.001001.x. PubMed DOI
Bajolet-Laudinat O., Girod-de Bentzmann S., Tournier J.M., Madoulet C., Plotkowski M.C., Chippaux C., Puchelle E. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect. Immun. 1994;62:4481–4487. PubMed PMC
Cecioni S., Oerthel V., Iehl J., Holler M., Goyard D., Praly J.P., Imberty A., Nierengarten J.F., Vidal S. Synthesis of dodecavalent fullerene-based glycoclusters and evaluation of their binding properties towards a bacterial lectin. Chemistry. 2011;17:3252–3261. doi: 10.1002/chem.201003258. PubMed DOI
Chabre Y.M., Giguère D., Blanchard B., Rodrigue J., Rocheleau S., Neault M., Rauthu S., Papadopoulos A., Arnold A.A., Imberty A., et al. Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors. Chem. Eur. J. 2011;17:6545–6562. doi: 10.1002/chem.201003402. PubMed DOI
Kadam R.U., Bergmann M., Hurley M., Garg D., Cacciarini M., Swiderska M.A., Nativi C., Sattler M., Smyth A.R., Williams P., et al. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. 2011;50:10631–10635. doi: 10.1002/anie.201104342. PubMed DOI PMC
Soomro Z.H., Cecioni S., Blanchard H., Praly J.P., Imberty A., Vidal S., Matthews S.E. CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Org. Biomol. Chem. 2011;9:6587–6597. doi: 10.1039/c1ob05676j. PubMed DOI
Cecioni S., Faure S., Darbost U., Bonnamour I., Parrot-Lopez H., Roy O., Taillefumier C., Wimmerová M., Praly J.P., Imberty A., et al. Selectivity among two lectins: Probing the effect of topology, multivalency and flexibility of “clicked” multivalent glycoclusters. Chem. Eur. J. 2011;17:2146–2159. doi: 10.1002/chem.201002635. PubMed DOI
Otsuka I., Blanchard B., Borsali R., Imberty A., Kakuchi T. Enhancement of plant and bacterial lectin binding affinities by three-dimensional organized cluster glycosides constructed on helical poly(phenylacetylene) backbones. ChemBioChem. 2010;11:2399–2408. doi: 10.1002/cbic.201000447. PubMed DOI
Cecioni S., Praly J.P., Matthews S.E., Wimmerová M., Imberty A., Vidal S. Rational design and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions: Influence of the linker arm. Chem. Eur. J. 2012;18:6250–6263. doi: 10.1002/chem.201200010. PubMed DOI
Kašaková M., Malinovská L., Klejch T., Hlaváčková M., Dvořáková H., Fujdiarová E., Rottnerová Z., Maťátková O., Lhoták P., Wimmerová M., et al. Selectivity of original C-hexopyranosyl calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 2018;469:60–72. doi: 10.1016/j.carres.2018.08.012. PubMed DOI
Palmioli A., Sperandeo P., Polissi A., Airoldi C. Targeting bacterial biofilm: A new LecA multivalent ligand with inhibitory activity. ChemBioChem. 2019 doi: 10.1002/cbic.201900383. PubMed DOI
Flockton T.R., Schnorbus L., Araujo A., Adams J., Hammel M., Perez L.J. Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles. Pathogens. 2019;8:55. doi: 10.3390/pathogens8020055. PubMed DOI PMC
Hu Y., Beshr G., Garvey C.J., Tabor R.F., Titz A., Wilkinson B.L. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces. 2017;159:605–612. doi: 10.1016/j.colsurfb.2017.08.016. PubMed DOI
Lundquist J.J., Toone E.J. The Cluster Glycoside Effect. Chem. Rev. 2002;102:555–578. doi: 10.1021/cr000418f. PubMed DOI
Visini R., Jin X., Bergmann M., Michaud G., Pertici F., Fu O., Pukin A., Branson T.R., Thies-Weesie D.M., Kemmink J., et al. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA. ACS Chem. Biol. 2015;10:2455–2462. doi: 10.1021/acschembio.5b00302. PubMed DOI
Boukerb A.M., Rousset A., Galanos N., Méar J.B., Thépaut M., Grandjean T., Gillon E., Cecioni S., Abderrahmen C., Faure K., et al. Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection. J. Med. Chem. 2014;57:10275–10289. doi: 10.1021/jm500038p. PubMed DOI
Jančaříková G., Herczeg M., Fujdiarová E., Houser J., Kövér K.E., Borbás A., Wimmerová M., Csávás M. Synthesis of α-L-fucopyranoside-presenting glycoclusters and investigation of their interaction with recombinant Photorhabdus asymbiotica lectin (PHL) Chem. Eur. J. 2018;24:4055–4068. doi: 10.1002/chem.201705853. PubMed DOI
Ruhal R., Antti H., Rzhepishevska O., Boulanger N., Barbero D.R., Wai S.N., Uhlin B.E., Ramstedt M. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces. 2015;127:182–191. doi: 10.1016/j.colsurfb.2015.01.030. PubMed DOI
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Brautigam C.A. Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. Methods Enzymol. 2015;562:109–133. doi: 10.1016/bs.mie.2015.05.001. PubMed DOI
Thai L.S., Malinovska L., Vašková M., Mező E., Kelemen V., Borbás A., Hodek P., Wimmerová M., Csávás M. Investigation of the Binding Affinity of a Broad Array of l-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin. Molecules. 2019;24:2262. doi: 10.3390/molecules24122262. PubMed DOI PMC
Csávás M., Malinovská L., Perret F., Gyurkó M., Illyés Z.T., Wimmerová M., Borbás A. Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from Burkholderia cenocepacia. Carbohydr. Res. 2017;437:1–8. doi: 10.1016/j.carres.2016.11.008. PubMed DOI
Herczeg M., Mező E., Molnár N., Ng S.K., Lee Y.C., Dah-Tsyr Chang M., Borbás A. Inhibitory Effect of Multivalent Rhamnobiosides on Recombinant Horseshoe Crab Plasma Lectin Interactions with Pseudomonas aeruginosa PAO1. Chem. Asian J. 2016;11:3398–3413. doi: 10.1002/asia.201601162. PubMed DOI
Sumii Y., Hibino H., Saidalimu I., Kawahara H., Shibata N. Design and synthesis of galactose-conjugated fluorinated and non-fluorinated proline oligomers: Towards antifreeze molecules. Chem. Commun. 2018;54:9749–9752. doi: 10.1039/C8CC05588B. PubMed DOI
Fox J.M., Zhao M., Fink M.J., Kang K., Whitesides G.M. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu. Rev. Biophys. 2018;47:223–250. doi: 10.1146/annurev-biophys-070816-033743. PubMed DOI
Sano K., Ogawa H. Hemagglutination (Inhibition) Assay. In: Hirabayashi J., editor. Lectins. 1st ed. Volume 1200. Humana Press; New York, NY, USA: 2014. pp. 47–52. PubMed
Schlick K.H., Cloninger M.J. Inhibition binding studies of glycodendrimer-lectin interactions using surface plasmon resonance. Tetrahedron. 2010;66:5305–5310. doi: 10.1016/j.tet.2010.05.038. PubMed DOI PMC
Gimeno A., Delgado S., Valverde P., Bertuzzi S., Berbís M.A., Echavarren J., Lacetera A., Martín-Santamaría S., Surolia A., Cañada F.J., et al. Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Blood-Group Antigens by Human Galectin-3. Angew. Chem. Int. Ed. 2019;58:7268–7272. doi: 10.1002/anie.201900723. PubMed DOI PMC
Imberty A., Wimmerová M., Mitchell E.P., Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: Insight into the molecular basis for host glycan recognition. Microbes Infect. 2004;6:221–228. doi: 10.1016/j.micinf.2003.10.016. PubMed DOI
Herrmann G., Yang L., Wu H., Song Z., Wang H., Høiby N., Ulrich M., Molin S., Riethmüller J., Döring G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis. 2010;202:1585–1592. doi: 10.1086/656788. PubMed DOI
Hauber H.P., Schulz M., Pforte A., Mack D., Zabel P., Schumacher U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 2008;5:371–376. doi: 10.7150/ijms.5.371. PubMed DOI PMC
Kubíčková B., Hadrabová J., Vašková L., Mandys V., Stiborová M., Hodek P. Susceptibility of airways to Pseudomonas aeruginosa infection: Mouse neuraminidase model. Monatsh. Chem. 2017;148:1993–2002. doi: 10.1007/s00706-017-2035-4. DOI