Calcium Phosphate Incorporated Bacterial Cellulose-Polyvinylpyrrolidone Based Hydrogel Scaffold: Structural Property and Cell Viability Study for Bone Regeneration Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31698725
PubMed Central
PMC6918328
DOI
10.3390/polym11111821
PII: polym11111821
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial cellulose, bone regeneration, calcium phosphate, degradation, hydrogel scaffolds, mechanical property,
- Publikační typ
- časopisecké články MeSH
This work focuses on the analysis of structural and functional properties of calcium phosphate (CaP) incorporated bacterial cellulose (BC)-polyvinylpyrrolidone (PVP) based hydrogel scaffolds referred to as "CaP/BC-PVP". CaP is incorporated in the scaffolds in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different concentrations (β-TCP: HA (w/w) = 20:80, 40:60, and 50:50). The scaffolds were characterized on the basis of porosity, thermal, biodegradation, mechanical, and cell viability/cytocompatibility properties. The structural properties of all the hydrogel scaffolds show significant porosity. The biodegradation of "CaP/BC-PVP" scaffold was evaluated following hydrolytic degradation. Weight loss profile, pH change, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) study confirm the significant degradability of the scaffolds. It is observed that a 50:50_CaP/BC-PVP scaffold has the highest degree of degradation. On the other hand, the compressive strengths of CaP/BC-PVP hydrogel scaffolds are found between 0.21 to 0.31 MPa, which is comparable with the human trabecular bone. The cell viability study is performed with a human osteosarcoma Saos-2 cell line, where significant cell viability is observed in all the hydrogel scaffolds. This indicated their ability to facilitate cell growth and cell proliferation. Considering all these substantial properties, CaP/BC-PVP hydrogel scaffolds can be suggested for detailed investigation in the context of bone regeneration application.
Zobrazit více v PubMed
Iaquinta M.R., Mazzoni E., Manfrini M., D’Agostino A., Trevisiol L., Nocini R., Trombelli L., Barbanti-Brodano G., Martini F., Tognon M. Innovative Biomaterials for Bone Regrowth. Int. J. Mol. Sci. 2019;20:618. doi: 10.3390/ijms20030618. PubMed DOI PMC
Chauvin-Kimoff L., Allard-Dansereau C., Colbourne M. The medical assessment of fractures in suspected child maltreatment: Infants and young children with skeletal injury. Paediatr. Child Health. 2018;23:156–160. doi: 10.1093/pch/pxx131. PubMed DOI PMC
Cohen H., Kugel C., May H., Medlej B., Stein D., Slon V., Hershkovitz I., Brosh T. The impact velocity and bone fracture pattern: Forensic perspective. Forensic Sci. Int. 2016;266:54–62. doi: 10.1016/j.forsciint.2016.04.035. PubMed DOI
Rabie A.B., Wong R.W., Hagg U. Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits. Br. J. Oral. Maxillofac. Surg. 2000;38:565–570. doi: 10.1054/bjom.2000.0464. PubMed DOI
Habibovic P. Strategic Directions in Osteoinduction and Biomimetics. Tissue Eng. Part A. 2017;23:1295–1296. doi: 10.1089/ten.tea.2017.0430. PubMed DOI
Hernlund E., Svedbom A., Ivergard M., Compston J., Cooper C., Stenmark J., McCloskey E.V., Jonsson B., Kanis J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) Arch. Osteoporos. 2013;8:136. doi: 10.1007/s11657-013-0136-1. PubMed DOI PMC
Oral A., Kucukdeveci A.A., Varela E., Ilieva E.M., Valero R., Berteanu M., Christodoulou N. Osteoporosis. The role of physical and rehabilitation medicine physicians. The European perspective based on the best evidence. A paper by the UEMS-PRM Section Professional Practice Committee. Eur. J. Phys. Rehabil. Med. 2013;49:565–577. PubMed
Tian L., Tang N., Ngai T., Wu C., Ruan Y., Huang L., Qin L. Hybrid fracture fixation systems developed for orthopaedic applications: A general review. J. Orthop. Transl. 2018;16:1–13. doi: 10.1016/j.jot.2018.06.006. PubMed DOI PMC
Siallagan S.F., Silalahi M., Boediono A., Estuningsih S., Noviana D. A Wearable Iron-Based Implant as an Intramedullary Nail in Tibial Shaft Fracture of Sheep. Int. J. Biomater. 2019;2019:1–10. doi: 10.1155/2019/8798351. PubMed DOI PMC
Christensen F.B., Dalstra M., Sejling F., Overgaard S., Bunger C. Titanium-alloy enhances bone-pedicle screw fixation: Mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur. Spine J. 2000;9:97–103. doi: 10.1007/s005860050218. PubMed DOI PMC
Sheikh Z., Najeeb S., Khurshid Z., Verma V., Rashid H., Glogauer M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials. 2015;8:5744–5794. doi: 10.3390/ma8095273. PubMed DOI PMC
Basu P., Saha N., Saha P. Inorganic calcium filled bacterial cellulose based hydrogel scaffold: Novel biomaterial for bone tissue regeneration. Int. J. Polym. Mater. 2019;68:134–144. doi: 10.1080/00914037.2018.1525733. DOI
Ratner B.D. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press; Cambridge, MA, USA: 2004.
Liu X., Miller II A.L., Park S., George M.N., Waletzki B.E., Xu H., Terzic A., Lu L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl. Mater. Interfaces. 2019;11:23558–23572. doi: 10.1021/acsami.9b04121. PubMed DOI PMC
Kankala R.K., Xu X.-M., Liu C.-G., Chen A.-Z., Wang S.-B. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers. 2018;10:807. doi: 10.3390/polym10070807. PubMed DOI PMC
Winkler T., Sass F.A., Duda G.N., Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Jt. Res. 2018;7:232–243. doi: 10.1302/2046-3758.73.BJR-2017-0270.R1. PubMed DOI PMC
Harris J.J., Lu S., Gabriele P. Commercial challenges in developing biomaterials for medical device development. Polym. Int. 2018;67:969–974. doi: 10.1002/pi.5590. DOI
Jeon O.H., Panicker L.M., Lu Q., Chae J.J., Feldman R.A., Elisseef J.H. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci. Rep. 2016;6:26761. doi: 10.1038/srep26761. PubMed DOI PMC
Puppi D., Migone C., Grassi L., Pirosa A., Maisetta G., Batoni G., Chiellini F. Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polym. Int. 2016;65:631–640. doi: 10.1002/pi.5101. DOI
Ardeshirylajimi A., Dinarvand P., Seyedjafari E., Langroudi L., Adegani F.J., Soleimani M. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res. 2013;354:849–860. doi: 10.1007/s00441-013-1693-8. PubMed DOI
Jin G.Z., Kim T.H., Kim J.H., Won J.E., Yoo S.Y., Choi S.J., Hyun J.K., Kim H.W. Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. J. Biomed. Mater. Res. A. 2013;101:1283–1291. doi: 10.1002/jbm.a.34425. PubMed DOI
Levi B., Hyun J.S., Montoro D.T., Lo D.D., Chan C.K., Hu S., Sun N., Lee M., Grova M., Connolly A.J., et al. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:20379–20384. doi: 10.1073/pnas.1218052109. PubMed DOI PMC
Duan X., Tu Q., Zhang J., Ye J., Sommer C., Mostoslavsky G., Kaplan D., Yang P., Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J. Cell. Physiol. 2011;226:150–157. doi: 10.1002/jcp.22316. PubMed DOI PMC
Ko J.Y., Park S., Im G.I. Osteogenesis from human induced pluripotent stem cells: An in vitro and in vivo comparison with mesenchymal stem cells. Stem Cells Dev. 2014;23:1788–1797. doi: 10.1089/scd.2014.0043. PubMed DOI
Ye J.H., Xu Y.J., Gao J., Yan S.G., Zhao J., Tu Q., Zhang J., Duan X.J., Sommer C.A., Mostoslavsky G., et al. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials. 2011;32:5065–5076. doi: 10.1016/j.biomaterials.2011.03.053. PubMed DOI PMC
Cheng D., Zhang X., Wang S., Liu L. Effect on Mechanical and Thermal Properties of Random Copolymer Polypropylene/Microcrystalline Cellulose Composites Using T-ZnOw as an Additive. Adv. Polym. Technol. 2019;2019:1–16. doi: 10.1155/2019/4862124. DOI
Schröpfer S.B., Bottene M.K., Bianchin L., Robinson L.C., de Lima V., Jahno V.D., da Silva Barud H., Ribeiro S.J. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polímeros. 2015;25:154–160. doi: 10.1590/0104-1428.1712. DOI
Qi G.X., Luo M.T., Huang C., Guo H.J., Chen X.F., Xiong L., Wang B., Lin X.Q., Peng F., Chen X.D. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. J. Appl. Polym. Sci. 2017;134:45066. doi: 10.1002/app.45066. DOI
Torgbo S., Sukyaia P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today. 2018;11:34–49. doi: 10.1016/j.apmt.2018.01.004. DOI
Pirsa S., Shamusi T., Kia E.M. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. J. Appl. Polym. Sci. 2018;135:46617. doi: 10.1002/app.46617. DOI
Basu P., Saha N., Alexandrova R., Andonova-Lilova B., Georgieva M., Miloshev G., Saha P. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering. Int. J. Mol. Sci. 2018;19:3980. doi: 10.3390/ijms19123980. PubMed DOI PMC
Fan X., Zhang T., Zhao Z., Ren H., Zhang Q., Yan Y., Lv G. Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. J. Appl. Polym. Sci. 2013;129:595–603. doi: 10.1002/app.38702. DOI
Wang Y., Xue Y., Wang J., Zhu Y., Zhu Y., Zhang X., Liao J., Li X., Wu X., Qin Y.-X., et al. A Composite Hydrogel with High Mechanical Strength, Fluorescence, and Degradable Behavior for Bone Tissue Engineering. Polymers. 2019;11:1112. doi: 10.3390/polym11071112. PubMed DOI PMC
Ozcelik B., Palmer J., Ladewig K., Facal Marina P., Stevens G.W., Abberton K., Morrison W.A., Blencowe A., Qiao G.G. Biocompatible Porous Polyester-Ether Hydrogel Scaffolds with Cross-Linker Mediated Biodegradation and Mechanical Properties for Tissue Augmentation. Polymers. 2018;10:179. doi: 10.3390/polym10020179. PubMed DOI PMC
De Mori A., Peña Fernández M., Blunn G., Tozzi G., Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers. 2018;10:285. doi: 10.3390/polym10030285. PubMed DOI PMC
Saha N., Shah R., Gupta P., Mandal B.B., Alexandrova R., Sikiric M.D., Saha P. PVP-CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;95:440–449. doi: 10.1016/j.msec.2018.04.050. PubMed DOI
Kocen R., Gasik M., Gantar A., Novak S. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed. Mater. 2017;12:025004. doi: 10.1088/1748-605X/aa5b00. PubMed DOI
Racine L., Texier I., Auzély-Velty R. Chitosan-based hydrogels: Recent design concepts to tailor properties and functions. Polym. Int. 2017;66:981–998. doi: 10.1002/pi.5331. DOI
Lyu S.P., Untereker D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009;10:4033–4065. doi: 10.3390/ijms10094033. PubMed DOI PMC
Lodhi B.A., Hussain M.A., Sher M., Haseeb M.T., Ashraf M.U., Hussain S.Z., Hussain I., Bukhari S.N.A. Polysaccharide-Based Superporous, Superabsorbent, and Stimuli Responsive Hydrogel from Sweet Basil: A Novel Material for Sustained Drug Release. Adv. Polym. Technol. 2019;2019:1–11. doi: 10.1155/2019/9583516. DOI
Janoušková O. Synthetic Polymer Scaffolds for Soft Tissue Engineering. Physiother. Res. 2018;67:S3335–S3348. doi: 10.33549/physiolres.933983. PubMed DOI
Goudouri O.M., Balasubramanian P., Boccaccini A.R. Characterizing the degradation behavior of bioceramic scaffolds. In: Tomlins P., editor. Characterisation and Design of Tissue Scaffolds. Elsevier; Amsterdam, The Netherlands: 2016. pp. 127–147. (Woodhead Publishing Series in Biomaterials). Chapter 6.
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Kumar P.T.S., Srinivasan S., Lakshmanan V.K., Tamura H., Nair S.V., Jayakumar R. β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr. Polym. 2011;85:584–591. doi: 10.1016/j.carbpol.2011.03.018. DOI
Will J., Detsch R., Boccaccini A.R. Characterization of Biomaterials. In: Bandyopadhyay A., Bose S., editors. Structural and Biological Characterization of Scaffolds. Academic Press; Cambridge, MA, USA: 2013. pp. 299–310. Chapter 7.1.
Roy N., Saha N., Kitano T., Saha P. Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydr. Polym. 2012;89:346–353. doi: 10.1016/j.carbpol.2012.03.008. PubMed DOI
Shah R., Vyroubal R., Fei H., Saha N., Kitano T., Saha P. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior. AIP Conf. Proc. 2015;1662:1–7.
LeGeros R.Z., Lin S., Rohanizadeh R., Mijares D., LeGeros J.P. Biophasic calcium phosphate bioceramics: Preparation, properties and application. J. Mater. Sci. Mater. Med. 2003;14:201–209. doi: 10.1023/A:1022872421333. PubMed DOI
Akaraonye E., Filip J., Safarikova M., Salih V., Keshavarz T., Knowles J.C., Roy I. Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose. Polym. Int. 2016;65:780–791. doi: 10.1002/pi.5103. DOI
Basu P., Saha N., Saha P. Swelling and rheological study of calcium phosphate filled bacterial cellulose based hydrogel scaffold. J. Appl. Polym. Sci. 2019;136:48522. doi: 10.1002/app.48522. DOI
Lin F., Zheng R., Chen J., Su W., Dong B., Lin C., Huang B., Lu B. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels. Carbohydr. Polym. 2019;205:244–254. doi: 10.1016/j.carbpol.2018.10.037. PubMed DOI
Kumar A., Zhang Y., Terracciano A., Zhao X., Su T.-L., Kalyon D.M., Katebifar S., Kumbar S.G., Yu X. Load-bearing biodegradable polycaprolactone-poly (lactic-co-glycolic acid)- beta tri-calcium phosphate scaffolds for bone tissue regeneration. Polym. Adv. Technol. 2019;30:1189–1197. doi: 10.1002/pat.4551. PubMed DOI PMC
Porter J.R., Henson A., Popat K.C. Biodegradable poly (epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30:780–788. doi: 10.1016/j.biomaterials.2008.10.022. PubMed DOI
Wu L., Ding J. In vitro degradation of three-dimensional porous poly (D, L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2004;25:5821–5830. doi: 10.1016/j.biomaterials.2004.01.038. PubMed DOI
Bouhadir K.H., Lee K.Y., Alsberg E., Damm K.L., Anderson K.W., Mooney D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001;17:945–950. doi: 10.1021/bp010070p. PubMed DOI
Gupta N.V., Shivakumar H.G. Investigation of swelling and mechanical properties of pH-sensitive superporous hydrogel composite. Iran. J. Pharm. Res. 2012;11:481–493. PubMed PMC
Maswal M., Chat O.A., Dar A.A. Rheological characterization of multi component hydrogel based on carboxymethyl cellulose: Insight into its encapsulation capacity and release kinetics towards ibuprofen. Colloid Polym. Sci. 2015;293:1723–1735. doi: 10.1007/s00396-015-3545-4. DOI
Köse G.T., Kenar H., Hasirci N., Hasirci V. Macroporous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials. 2003;24:1949–1958. doi: 10.1016/S0142-9612(02)00613-0. PubMed DOI
Mohite B.V., Patil S.V. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr. Polym. 2014;106:132–141. doi: 10.1016/j.carbpol.2014.02.012. PubMed DOI
Ferfera-Harrar H., Aouaz N., Dairi N. Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: Synthesis and properties. Polym. Bull. 2016;73:815–840. doi: 10.1007/s00289-015-1521-2. DOI
Sun S., Cao H., Su H., Tan T. Preparation and characterization of novel injectable in situ cross-linked hydrogel. Polym. Bull. 2009;62:699–711. doi: 10.1007/s00289-009-0048-9. DOI
Mao J.S., Zhao L.G., Yin Y.J., Yao K.D. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials. 2003;24:1067–1074. doi: 10.1016/S0142-9612(02)00442-8. PubMed DOI
Sheenoy A.V. Rheology of Filled Polymer Systems. Elsevier; Amsterdam, The Netherlands: 1999.
Annabi N., Nichol J.W., Zhong X., Ji C., Koshy S., Khademhosseini A., Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 2010;16:371–383. doi: 10.1089/ten.teb.2009.0639. PubMed DOI PMC
Pandit V., Pai R.S., Devi K., Suresh S. In vitro-in vivo evaluation of fast-dissolving tablets containing solid dispersion of pioglitazone hydrochloride. J. Adv. Pharm. Technol. Res. 2012;3:160–170. PubMed PMC
Maghraby G.M., Ghanem S.F. Preparation and Evaluation of Rapidly Dissolving Tablets of Raloxifene Hydrochloride by Ternary System Formation. Int. J. Pharm. Pharm. Sci. 2016;8:127–136.
Oliveira R.L., Vieira J.G., Barud H.S., Assunção R.M.N., Filho G.R., Ribeiro S.J.L., Messadeqq Y. Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. J. Braz. Chem. Soc. 2015;26:1861–1870. doi: 10.5935/0103-5053.20150163. DOI
Gabbott P. Principles and Applications of Thermal Analysis. Blackwell Publishing; Hoboken, NJ, USA: 2008. p. 464.
Matraszek A., Radominska E. The revised phase diagram of the Ca3(PO4)2–YPO4 system. The temperature and concentration range of solid-solution phase fields. J. Therm. Anal. Calorim. 2014;117:101. doi: 10.1007/s10973-014-3662-1. DOI
Klemm D., Ahrem H., Kramer F., Fried W., Wippermann J., Kinne R.W. Bacterial Nanocellulose Hydrogels Designed as Bioartificial Medical Implants. In: Gama M., Gatenholm P., Klemm D., editors. Bacterial NanoCellulose a Sophisticated Multifunctional Material. CRC Press; Boca Raton, FL, USA: 2012. pp. 175–196. Chapter 9.
Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018;6:90–99. PubMed PMC
Gajjar C.R., King M.W. Degradation Process. In: Gajjar C.R., King M.W., editors. Resorbable Fiber-Forming Polymers for Biotextile Applications, Briefs in Materials. Springer; Berlin, Germany: 2014.
Akagi Y., Gosho S., Anraku Y., Sakuma I. Control of Degradation Properties of Polymer Gel; Proceedings of the ECS Meeting Abstract (Abstract MA2018-03 88), Poster Paper Presented at First International Conference on 4D Materials and Systems; Yonezawa, Japan. 26–30 August 2018.
Houmard M., Fu Q., Genet M., Saiz E., Tomsia A.P. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2013;101:1233–1242. doi: 10.1002/jbm.b.32935. PubMed DOI
Sala G. Composite degradation due to fluid absorption. Compos. Part B. 2000;31:357–373. doi: 10.1016/S1359-8368(00)00025-1. DOI
Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Academic Press; Cambridge, MA, USA: 2012.
Yacob N., Hashim K. Morphological effect on swelling behaviour of hydrogel. AIP Conf. Proc. 2014;1584:153.
Nie L., Suo J., Zou P., Feng S. Preparation and properties of biphasic calcium phosphate scaffolds multiply coated with HA/PLLA nanocomposites for bone tissue engineering applications. J. Nanomater. 2012;2012:1–11. doi: 10.1155/2012/213549. DOI
Kumar A., Sinha J. Chapter 8 Electrochemical Transistors for Applications in Chemical and Biological Sensing. In: Bernards D.A., Owens R.M., Malliaras G.G., editors. Organic Semiconductors in Sensor Applications. Volume 107. Springer; Berlin, Germany: 2008. pp. 245–261. (Springer Series in Materials Science).
Grover C., Shetty N. Evaluation of calcium ion release and change in pH on combining calcium hydroxide with different vehicles. Contemp. Clin. Dent. 2014;5:434–439. doi: 10.4103/0976-237X.142803. PubMed DOI PMC
Feng J., Zhang Q., Tu Z., Tu W., Wan Z., Pan M., Zhang H. Degradation of silicone rubbers with different hardness in various aqueous solutions. Polym. Degrad. Stabil. 2014;109:122–128. doi: 10.1016/j.polymdegradstab.2014.07.011. DOI
Bartošová A., Soldán M., Sirotiak M., Blinová L., Michaliková A. Application of Ftir-Atr Spectroscopy for Determination of Glucose in Hydrolysates of Selected Starches. J. Slovak Univ. Technol. 2013;21:116–121. doi: 10.2478/rput-2013-0019. DOI
Fengyan L., Fu H. Effect of Alkaline Degumming on Structure and Properties of Lotus Fibers at Different Growth Period. J. Eng. Fibers Fabr. 2015;10:135–139.
Mróz W., Bombalska A., Budne B., Burdynska S., Jedynski M., Prokopiuk A., Menaszek E., Scisłowska-Czarnecka A., Niedzielska A., Niedzielski K. Comparative study of hydroxyapatite and octacalcium phosphate coatings deposited on metallic implants by PLD method. Appl. Phys. A. 2010;101:713–716. doi: 10.1007/s00339-010-5926-3. DOI
Chen Q.Z., Boccaccini A.R. Bioactive Materials and scaffolds for Tissue Engineering. In: Wnek G.E., Bowlin G.L., editors. Encyclopedia of Biomaterials and Biomedical Engineering. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008. pp. 142–151.
Deshmukh M., Singh Y., Gunaseelan S., Gao D., Stein S., Sinko P.J. Biodegradable poly (ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials. 2010;31:6675–6684. doi: 10.1016/j.biomaterials.2010.05.021. PubMed DOI PMC
Rodel M., Meininger S., Groll J., Gbureck U. Bioceramics as drug delivery systems. In: Thomas S., Balakrishnan P., Sreekala M.S., editors. Fundamental Biomaterials: Ceramics. Woodhead Publishing; Cambridge, UK: 2018. pp. 153–194. (Woodhead Publishing Series in Biomaterials). Chapter 7.
Odelius K., Höglund A., Kumar S., Hakkarainen M., Ghosh A.K., Bhatnagar N., Albertsson A.-C. Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules. 2011;12:1250–1258. doi: 10.1021/bm1015464. PubMed DOI
Chiu Y.C., Kocagöz S., Larson J.C., Brey E.M. Evaluation of Physical and Mechanical Properties of Porous Poly (Ethylene Glycol)-co-(L-Lactic Acid) Hydrogels during Degradation. PLoS ONE. 2013;8:e60728. doi: 10.1371/journal.pone.0060728. PubMed DOI PMC
Gerhardt L.-C., Boccaccini A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3:3867–3910. doi: 10.3390/ma3073867. PubMed DOI PMC
Misch C.E., Zhimin Q., Bidez M.W.J. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral. Maxillofac. Surg. 1999;57:700–706. doi: 10.1016/S0278-2391(99)90437-8. PubMed DOI