Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30544895
PubMed Central
PMC6320792
DOI
10.3390/ijms19123980
PII: ijms19123980
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, apoptosis, bacterial cellulose, biocompatibility, bone tissue engineering, in vitro bio-mineralization,
- MeSH
- celulosa chemie MeSH
- hydrogely chemie MeSH
- hydroxyapatit chemie MeSH
- kosti a kostní tkáň cytologie MeSH
- lidé MeSH
- myši MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- vápník chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- celulosa MeSH
- hydrogely MeSH
- hydroxyapatit MeSH
- vápník MeSH
The principal focus of this work is the in-depth analysis of the biological efficiency of inorganic calcium-filled bacterial cellulose (BC) based hydrogel scaffolds for their future use in bone tissue engineering/bioengineering. Inorganic calcium was filled in the form of calcium phosphate (β-tri calcium phosphate (β-TCP) and hydroxyapatite (HA)) and calcium carbonate (CaCO₃). The additional calcium, CaCO₃ was incorporated following in vitro bio-mineralization. Cell viability study was performed with the extracts of BC based hydrogel scaffolds: BC-PVP, BC-CMC; BC-PVP-β-TCP/HA, BC-CMC-β-TCP/HA and BC-PVP-β-TCP/HA-CaCO₃, BC-CMC-β-TCP/HA-CaCO₃; respectively. The biocompatibility study was performed with two different cell lines, i.e., human fibroblasts, Lep-3 and mouse bone explant cells. Each hydrogel scaffold has facilitated notable growth and proliferation in presence of these two cell types. Nevertheless, the percentage of DNA strand breaks was higher when cells were treated with BC-CMC based scaffolds i.e., BC-CMC-β-TCP/HA and BC-CMC-β-TCP/HA-CaCO₃. On the other hand, the apoptosis of human fibroblasts, Lep-3 was insignificant in BC-PVP-β-TCP/HA. The scanning electron microscopy confirmed the efficient adhesion and growth of Lep-3 cells throughout the surface of BC-PVP and BC-PVP-β-TCP/HA. Hence, among all inorganic calcium filled hydrogel scaffolds, 'BC-PVP-β-TCP/HA' was recommended as an efficient tissue engineering scaffold which could facilitate the musculoskeletal (i.e., bone tissue) engineering/bioengineering.
Zobrazit více v PubMed
Buenzli P.R., Sims N.A. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–150. doi: 10.1016/j.bone.2015.02.016. PubMed DOI
Kini U., Nandeesh B.N. Physiology of Bone Formation, Remodeling and Metabolism, In Radionuclide and Hybrid Bone Imaging. Springer; Heidelberg, Germany: 2012. pp. 29–57.
International Osteoporosis Foundation (IOF) [(accessed on 30 August 2017)];2017 Available online: https://www.iofbonehealth.org/facts-statistics.
Castilho M., Dias M., Vorndran E., Gbureck E., Fernandes P., Pires I., Gouveia B., Armes H., Pires E., Rodrigues J. Application of a 3D printed customized Implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication. 2014;6:1–13. doi: 10.1088/1758-5082/6/2/025005. PubMed DOI
Deligkaris K., Tadele T.S., Olthuis W. Hydrogel-based devices for biomedical applications. Sens. Actuators B. 2010;147:765–774. doi: 10.1016/j.snb.2010.03.083. DOI
Roy N., Saha N., Kitano T., Saha P. Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydr. Polym. 2012;89:346–353. doi: 10.1016/j.carbpol.2012.03.008. PubMed DOI
Roy S.G., De P. Swelling properties of amino acid containing cross-linked polymeric organogels and their respective poly-electrolytic hydrogels with pH and salt responsive property. Polymer. 2014;55:5425–5434. doi: 10.1016/j.polymer.2014.08.072. DOI
Saha N. Morphology, Absorptivity and Viscoelastic Properties of Mineralized PVP-CMC Hydrogel. AIP Conf. Proc. 2013;1526:292–300. doi: 10.1063/1.4802623. DOI
Burg K.J.L., Porter S.J.F., Kellam J.F. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–2359. doi: 10.1016/S0142-9612(00)00102-2. PubMed DOI
Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone Regeneration. J. Nanosci. Nanotechnol. 2014;14:15–56. doi: 10.1166/jnn.2014.9127. PubMed DOI PMC
Stratton S., Shelke N.B., Hoshino K. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016;1:93–108. doi: 10.1016/j.bioactmat.2016.11.001. PubMed DOI PMC
Thavornyutikarn B., Chantarapanich N., Sitthiseripratip K. Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Prog. Biomater. 2014;3:61–102. doi: 10.1007/s40204-014-0026-7. PubMed DOI PMC
Walimbe T., Panitch A., Sivasankar P.M. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J. Voice. 2017;31:416–423. doi: 10.1016/j.jvoice.2016.11.014. PubMed DOI PMC
Ritz U., Gerke R., Götz H., Stein S., Rommens P.M. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study. Int. J. Mol. Sci. 2017;18:2569. doi: 10.3390/ijms18122569. PubMed DOI PMC
Jo Y.-Y., Kim S.-G., Kwon K.-J., Kweon H., Chae W.-S., Yang W.-G., Lee E.-Y., Seok H. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo. Int. J. Mol. Sci. 2017;18:858. doi: 10.3390/ijms18040858. PubMed DOI PMC
Gentile P., Chiono V., Carmagnola I., Hatton P.V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014;15:3640–3659. doi: 10.3390/ijms15033640. PubMed DOI PMC
Jiang P., Ran J., Yan P., Zheng L., Shen X., Tong H. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. J. Biomater. Sci. Polym. Ed. 2018;29:107–124. doi: 10.1080/09205063.2017.1403149. PubMed DOI
Keshk S. Bacterial Cellulose Production and its Industrial Applications, Bacterial Cellulose Production and its Industrial Applications. J. Bioprocess. Biotech. 2014;4:1000150. doi: 10.4172/2155-9821.1000150. DOI
Shah R., Vyroubal R., Fei H., Saha N., Kitano T., Saha P. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior. AIP Conf. Proc. 2015;1662 doi: 10.1063/1.4918895. DOI
Ul-Islam M., Khan T., Kon Park J. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012;88:596–603. doi: 10.1016/j.carbpol.2012.01.006. DOI
Rey C., Combes C., Drouet C., Glimcher M.J. Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 2009;20:1013–1021. doi: 10.1007/s00198-009-0860-y. PubMed DOI PMC
Aquino-Martínez R., Artigas N., Gámez B., Rosa J.L., Ventura F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signaling. PLoS ONE. 2017;12:e0178158. doi: 10.1371/journal.pone.0178158. PubMed DOI PMC
McCleskey E.W., Fox A.P., Feldman D., Tsien R.W. Different types of calcium channels. J. Exp. Biol. 1986;124:177–190. PubMed
Dvorak-Ewell M.M., Chen T.H., Liang N., Garvey C., Liu B., Tu C., Chang W., Bikle D.D., Shoback D.M. Osteoblast Extracellular Ca2+-Sensing Receptor Regulates Bone Development, Mineralization and Turnover. J. Bone Miner. Res. 2011;26:2935–2947. doi: 10.1002/jbmr.520. PubMed DOI PMC
Dvorak M.M., Siddiqua A., Ward D.T. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. USA. 2004;101:5140–5145. doi: 10.1073/pnas.0306141101. PubMed DOI PMC
Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018;6:2–90. PubMed PMC
Drzewiecka K., Kleczewska J., Krasowski M., Łapińska B. Mechanical properties of composite material modified with amorphous calcium phosphate. J. Achiev. Mater. Manuf. Eng. 2016;74:22–28. doi: 10.5604/17348412.1225754. DOI
Muthukumar T., Aravinthan A., Sharmila J. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng Compound, K. Carbohydr. Polym. 2016;152:566–574. doi: 10.1016/j.carbpol.2016.07.003. PubMed DOI
Shah R., Saha N., Kitano T., Saha P. Preparation of CaCO3-Based Biomineralized Polyvinylpyrrolidone-Carboxymethylcellulose Hydrogels and Their Viscoelastic Behaviour. J. Appl. Polym. Sci. 2014;40237:1–9. doi: 10.1002/APP.40237. DOI
Roy N., Saha N., Kitano T., Saha P. Novel hydrogels of PVP–CMC and their swelling effect on viscoelastic properties. J. Appl. Polym. Sci. 2010;117:1703–1710. doi: 10.1002/app.32056. DOI
Allou N.B., Yadav A., Pal M., Goswamee R.L. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon–norfloxacin intercalated layered double hydroxides. Carbohydr. Polym. 2018;186:282–289. doi: 10.1016/j.carbpol.2018.01.066. PubMed DOI
Saha N., Shah R., Gupta P., Mandal B.B., Alexandrova R., Sikiric M.D., Saha P. PVP-CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration. Mater. Sci. Eng. C. 2018 doi: 10.1016/j.msec.2018.04.050. PubMed DOI
Kim J., Cai Z., Lee H.S., Choi G.S., Lee D.H., Jo C. Preparation and characterization of bacterial cellulose/chitosan composite for potential biomedical application. J. Polym. Res. 2011;18:739–744. doi: 10.1007/s10965-010-9470-9. DOI
Saska S., Teixeira L.N., de Oliveira P.T., Gaspar A.M.M., Ribeiro S.J.L., Messaddeq Y., Marchetto R. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 2012;22:22102–22112. doi: 10.1039/c2jm33762b. DOI
Pértile R.A.N., Moreira S., Gil da Costa R.M., Correia A., Guãrdao L., Gartner F., Vilanova M., Gama M. Bacterial Cellulose: Long-Term Biocompatibility Studies. J. Biomater. Sci. Polym. Ed. 2018;201223:1339–1354. doi: 10.1163/092050611X581516. PubMed DOI
Lee J.H., Ryu M.Y., Baek H.-R., Lee K.M., Seo J.-H., Lee H.-K. Fabrication and Evaluation of Porous Beta-Tricalcium Phosphate/Hydroxyapatite (60/40) Composite as a Bone Graft Extender Using Rat Calvarial Bone Defect Model. Sci. World J. 2013;481789:1–9. doi: 10.1155/2013/481789. PubMed DOI PMC
Kamba A.S., Ismail M., Ibrahim T.A.T., Zakaria Z.A.B. Biocompatibility of Bio Based Calcium Carbonate Nanocrystals Aragonite Polymorph on NIH 3T3 Fibroblast Cell Line. Afr. J. Tradit. Complement. Altern. Med. 2014;11:31–38. doi: 10.4314/ajtcam.v11i4.5. PubMed DOI PMC
Andonova-Lilova B., Alexandrova R., Rabadjieva D., Tepavitcharova S. Application of cultured murine cells for initial evaluation of the biocompatibility of Mg and Zn-modified tri-calcium phosphates. C. R. Acad. Bulg. Sci. 2012;65:1099–1104.
Martín L., Alonso M., Girotti A., Arias F.J., Rodriguez-Cabello J.C. Synthesis and Characterization of Macroporous Thermosensitive Hydrogels from Recombinant Elastin-Like Polymers. Biomacromolecules. 2009;10:3015–3022. doi: 10.1021/bm900560a. PubMed DOI
Gafter U., Malachi T., Ori Y., Breitbart H. The role of calcium in human lymphocyte DNA repair ability. J. Lab. Clin. Med. 1997;130:33–41. doi: 10.1016/S0022-2143(97)90056-1. PubMed DOI
Buljan Z.I., Ribaric S.P., Abram M., Ivankovic A., Spalj S. In vitro oxidative stress induced by conventional and self-ligating brackets. Angle Orthod. 2012;82:340–345. doi: 10.2319/061811-395.1. PubMed DOI PMC
Guadagno N.A., Moriconi C., Licursi V., D’Acunto E., Nisi P.S., Carucci N., De Jaco A., Cacci E., Negri R., Lupo G., Miranda E. Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB. Neurobiol. Dis. 2017;103:32–44. doi: 10.1016/j.nbd.2017.03.010. PubMed DOI PMC
Eliaz N., Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications: A Review. Materials. 2017;10:334. doi: 10.3390/ma10040334. PubMed DOI PMC
Voccoli V., Tonazzini I., Signore G., Caleo M., Cecchini M. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis. 2014;5:1–10. doi: 10.1038/cddis.2014.483. PubMed DOI PMC
McIlwain D.R., Berger T., Mak T.W. Review on Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013;5:1–28. doi: 10.1101/cshperspect.a008656. PubMed DOI PMC
Chang H.-I., Wang Y.I. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Daniel E., editor. Regenerative Medicine and Tissue Engineering-Cells and Biomaterials. InTech; London, UK: 2011. pp. 569–588.
Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Basu P., Saha N., Saha P. Inorganic calcium filled bacterial cellulose based hydrogel scaffold: A novel biomaterial for bone tissue regeneration. Int. J. Polym. Mater. 2018 in press. PubMed PMC
Basu P., Saha N., Bandyopadhyay S., Saha P. Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds. AIP Conf. Proc. 2017;1843:050008. doi: 10.1063/1.4983000. DOI
Alcantar N.A., Aydil E.S., Israelachvili J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000;51:343–351. doi: 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D. PubMed DOI
Struillou X., Rakic M., Badran Z., Macquigneau L., Colombeix C., Pilet P., Verner C., Gauthier O., Weiss P., Soueidan A. The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: An experimental study in dogs. J. Mater. Sci. Mater. Med. 2013;24:2749–2760. doi: 10.1007/s10856-013-5019-x. PubMed DOI
Rauch M.W., Dressler M., Scheel H., Opdenbosch D.V., Zollfrank C. Mineralization of Calcium Carbonates in Cellulose Gel Membranes. Eur. J. Inorg. Chem. 2012;32:5192–5198. doi: 10.1002/ejic.201200575. DOI
Cellulose-Based Composites as Scaffolds for Tissue Engineering: Recent Advances