Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: A case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea)
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31704993
PubMed Central
PMC6841689
DOI
10.1038/s41598-019-52722-4
PII: 10.1038/s41598-019-52722-4
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Ciliophora classification genetics MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Macronucleus genetics MeSH
- DNA, Ribosomal analysis MeSH
- RNA, Protozoan analysis MeSH
- RNA, Ribosomal, 18S analysis MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Protozoan MeSH
- RNA, Ribosomal, 18S MeSH
The ciliate genus Spirostomum comprises eight morphospecies, inhabiting diverse aquatic environments worldwide, where they can be used as water quality indicators. Although Spirostomum species are relatively easily identified using morphological methods, the previous nuclear rDNA-based phylogenies indicated several conflicts in morphospecies delineation. Moreover, the single locus phylogenies and previous analytical approaches could not unambiguously resolve phylogenetic relationships among Spirostomum morphospecies. Here, we attempt to investigate species boundaries and evolutionary history of Spirostomum taxa, using 166 new sequences from multiple populations employing one mitochondrial locus (CO1 gene) and two nuclear loci (rRNA operon and alpha-tubulin gene). In accordance with previous studies, relationships among the eight Spirostomum morphospecies were poorly supported statistically in individual gene trees. To overcome this problem, we utilised for the first time in ciliates the Bayesian coalescent approach, which accounts for ancestral polymorphisms, incomplete lineage sorting, and recombination. This strategy enabled us to robustly resolve deep relationships between Spirostomum species and to support the hypothesis that taxa with compact macronucleus and taxa with moniliform macronucleus each form a distinct lineage. Bayesian coalescent-based delimitation analyses strongly statistically supported the traditional morphospecies concept but also indicated that there are two S. minus-like cryptic species and S. teres is non-monophyletic. Spirostomum teres was very likely defined by a set of ancestral features of lineages that also gave rise to S. yagiui and S. dharwarensis. However, molecular data from type populations of the morphospecies S. minus and S. teres are required to unambiguously resolve the taxonomic problems.
Department of Biological Science University of Ulsan Ulsan 44610 South Korea
Department of Botany Charles University 128 01 Prague Czech Republic
Department of Zoology Comenius University in Bratislava 842 15 Bratislava Slovakia
School of Science Mae Fah Luang University Chiang Rai 57100 Thailand
See more in PubMed
Dopheide A, Lear G, Stott R, Lewis G. Molecular characterization of ciliate diversity in stream biofilms. Appl. Environ. Microbiol. 2008;74:1740–1747. doi: 10.1128/AEM.01438-07. PubMed DOI PMC
Hakenkamp CC, Morin A. The importance of meiofauna to lotic ecosystem functioning. Freshw. Biol. 2000;44:165–175. doi: 10.1046/j.1365-2427.2000.00589.x. DOI
Lynn, D. H. The Ciliated Protozoa. Characterization, Classification, and Guide to the Literature. 3rd edn (Springer Verlag, 2008).
Finlay BJ, Esteban GF, Brown S, Fenchel T, Hoef-Emden K. Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist. 2006;157:377–390. doi: 10.1016/j.protis.2006.05.012. PubMed DOI
Boscaro V, Fokin SI, Verni F, Petroni G. Survey of Paramecium duboscqui using three markers and assessment of the molecular variability in the genus Paramecium. Mol. Phylogenet. Evol. 2012;65:1004–1013. doi: 10.1016/j.ympev.2012.09.001. PubMed DOI
Boscaro V, et al. Focusing on genera to improve species identification: Revised systematics of the ciliate Spirostomum. Protist. 2014;165:527–541. doi: 10.1016/j.protis.2014.05.004. PubMed DOI
Chantangsi C, Lynn DH. Phylogenetic relationships within the genus Tetrahymena inferred from the cytochrome c oxidase subunit 1 and the small subunit ribosomal RNA genes. Mol. Phylogenet. Evol. 2008;49:979–987. doi: 10.1016/j.ympev.2008.09.017. PubMed DOI
Gentekaki E, Lynn DH. High-level genetic diversity but no population structure inferred from nuclear and mitochondrial markers of the peritrichous ciliate Carchesium polypinum in the Grand River basin (North America) Appl. Environ. Microbiol. 2009;75:3187–3195. doi: 10.1128/AEM.00178-09. PubMed DOI PMC
Gentekaki E, Lynn DH. Evidence for cryptic speciation in Carchesium polypinum Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial, nuclear, and morphological markers. J. Eukaryot. Microbiol. 2010;57:508–519. doi: 10.1111/j.1550-7408.2010.00505.x. PubMed DOI
Kher CP, et al. Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode. Protist. 2011;162:2–13. doi: 10.1016/j.protis.2010.03.004. PubMed DOI
Przyboś E, Tarcz S, Rautian M, Sawka N. Delimiting species boundaries within a paraphyletic species complex: insights from morphological, genetic, and molecular data on Paramecium sonneborni (Paramecium aurelia species complex, Ciliophora, Protozoa) Protist. 2015;166:438–456. doi: 10.1016/j.protis.2015.07.001. PubMed DOI
Shazib SUA, Vďačný P, Kim JH, Jang SW, Shin MK. Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Mol. Phylogenet. Evol. 2016;102:128–144. doi: 10.1016/j.ympev.2016.05.041. PubMed DOI
Strüder-Kypke MC, Wright ADG, Fokin SI, Lynn DH. Phylogenetic relationships of the genus Paramecium inferred from small subunit rRNA gene sequences. Mol. Phylogenet. Evol. 2000;14:122–130. doi: 10.1006/mpev.1999.0686. PubMed DOI
Syberg-Olsen MJ, et al. Biogeography and character evolution of the ciliate genus Euplotes (Spirotrichea, Euplotia), with description of Euplotes curdsi sp. nov. PLoS One. 2016;11:e0165442. doi: 10.1371/journal.pone.0165442. PubMed DOI PMC
Tarcz S, et al. Paramecium putrinum (Ciliophora, Protozoa): The first insight into the variation of two DNA fragments – Molecular support for the existence of cryptic species. Mol. Phylogenet. Evol. 2014;73:140–145. doi: 10.1016/j.ympev.2014.01.019. PubMed DOI
Zhao Y, et al. Utility of combining morphological characters, nuclear and mitochondrial genes: an attempt to resolve the conflicts of species identification for ciliated protists. Mol. Phylogenet. Evol. 2016;94:718–729. doi: 10.1016/j.ympev.2015.10.017. PubMed DOI
Zhao Y, Yi Z, Warren A, Song W. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora) Proc. R. Soc. B. 2018;285:20172159. doi: 10.1098/rspb.2017.2159. PubMed DOI PMC
Curds, C. R., Gates, M. A. & Roberts, D. M. L. British and Other Freshwater Ciliated Protozoa. Part II. Ciliophora: Kinetofragminophora. The Linnean Society of London and the estuarine and brackish-water sciences association. (Cambridge University Press, 1983).
Fernandes NM, da Silva Neto ID. Morphology and 18S rDNA gene sequence of Spirostomum minus and Spirostomum teres (Ciliophora: Heterotrichea) from Rio de Janeiro, Brazil. Zool. 2013;30:72–79. doi: 10.1590/S1984-46702013000100009. DOI
Jang SW, Kwon CB, Shin MK. First records of two Spirostomum ciliates (Heterotrichea: Heterotrichida: Spirostomidae) from Korea. Animal Syst. Evol. Divers. 2012;28:29–35. doi: 10.5635/ASED.2012.28.1.029. DOI
Repak AJ, Isquith IR. The systematics of the genus Spirostomum Ehrenberg, 1838. Acta Protozool. 1974;12:325–333.
Shazib SUA, Vďačný P, Kim JH, Jang SW, Shin MK. Phylogenetic relationships of the ciliate class Heterotrichea (Protista, Ciliophora, Postciliodesmatophora) inferred from multiple molecular markers and multifaceted analysis strategy. Mol. Phylogenet. Evol. 2014;78:118–135. doi: 10.1016/j.ympev.2014.05.012. PubMed DOI
Foissner W, Berger H, Kohmann F. Taxonomische und ökologische Revision der Ciliaten des Saprobiesystems — Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft. 1992;5/92:1–502.
Bradley MW, Esteban GF, Finlay BJ. Ciliates in chalk-stream habitats congregate in biodiversity hot spots. Res. Microbiol. 2010;161:619–625. doi: 10.1016/j.resmic.2010.05.016. PubMed DOI
Finlay BJ, Esteban GF. Freshwater protozoa: Biodiversity and ecological function. Biodivers. Conserv. 1998;7:1163–1186. doi: 10.1023/A:1008879616066. DOI
Berger, H. & Foissner, W. Illustrated guide and ecological notes to ciliate indicator species (Protozoa, Ciliophora) in running waters, lakes, and sewage plants in Handbuch Angewandte Limnologie (eds Steinberg, C., Calmano, W., Klapper, H. & Wilken, R.-D.) 1–160. (Ecomed Verlag, 2003).
Berger, H., Foissner, W. & Kohmann, F. Bestimmung und Ökologie der Mikrosaprobien nach DIN 38410. (Gustav Fischer, 1997).
Nałecz-Jawecki G, Sawicki J. Spirotox – a new tool for testing the toxicity of volatile compounds. Chemosphere. 1999;38:3211–3218. doi: 10.1016/S0045-6535(98)00482-2. PubMed DOI
Twagilimana L, Bohatier J, Groliere CA, Bonnemoy F, Sargos D. A new low-cost microbiotest with the protozoan Spirostomum teres: culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol. Environ. Saf. 1998;41:231–244. doi: 10.1006/eesa.1998.1698. PubMed DOI
Tirjaková E, Krajčovičová K, Illyová M, Vďačný P. Interaction of ciliate communities with cyanobacterial water bloom in a shallow, hypertrophic reservoir. Acta Protozool. 2016;55:173–188. doi: 10.4467/16890027AP.16.017.5749. DOI
Hines HN, Onsbring H, Ettema TJ, Esteban GF. Molecular investigation of the ciliate Spirostomum semivirescens, with first transcriptome and new geographical records. Protist. 2018;169:875–886. doi: 10.1016/j.protis.2018.08.001. PubMed DOI
Chen X, Kim JH, Shazib SUA, Kwon CB, Shin MK. Morphology and molecular phylogeny of three heterotrichid species (Ciliophora, Heterotrichea), including a new species of Anigsteinia. Eur. J. Protistol. 2017;61:278–293. doi: 10.1016/j.ejop.2017.06.005. PubMed DOI
Fernandes NM, Paiva TdaS, da Silva-Neto ID, Schlegel M, Schrago CG. Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data. Mol. Phylogenet. Evol. 2016;95:229–246. doi: 10.1016/j.ympev.2015.10.030. PubMed DOI
Kim MS, Kim JH, Shin MK. First record of two Spirostomum species (Spirostomatidae, Heterotrichida, Heterotrichea) of ciliates from Jindo Island in Korea. Animal Syst. Evol. Divers. 2016;9:1–9. doi: 10.5635/ASED.2016.SIN9.041. DOI
Caisová L, Marin B, Melkonian M. A close-up view on ITS2 evolution and speciation – a case study in the Ulvophyceae (Chlorophyta, Viridiplantae) BMC Evol. Biol. 2011;11:262. doi: 10.1186/1471-2148-11-262. PubMed DOI PMC
Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003;19:370–375. doi: 10.1016/S0168-9525(03)00118-5. PubMed DOI
Goertzen LR, Cannone JJ, Gutell RR, Jansen RK. ITS secondary structure derived from comparative analysis: Implications for sequence alignment and phylogeny of the Asteraceae. Mol. Phylogenet. Evol. 2003;29:216–234. doi: 10.1016/S1055-7903(03)00094-0. PubMed DOI
Keller A, et al. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct. 2010;5:1–12. doi: 10.1186/1745-6150-5-4. PubMed DOI PMC
Mai JC, Coleman AW. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 1997;44:258–271. doi: 10.1007/PL00006143. PubMed DOI
Marin B, Melkonian M. Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist. 2010;161:304–336. doi: 10.1016/j.protis.2009.10.002. PubMed DOI
Müller T, Philippi N, Dandekar T, Schultz J, Wolf M. Distinguishing species. RNA. 2007;13:1469–1472. doi: 10.1261/rna.617107. PubMed DOI PMC
Wolf M, Chen S, Song J, Ankenbrand M, Müller T. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences – A proof of concept. PLoS One. 2013;8:e66726. doi: 10.1371/journal.pone.0066726. PubMed DOI PMC
Wolf M. ITS so much more. Trends Genet. 2015;31:175–176. doi: 10.1016/j.tig.2015.02.005. PubMed DOI
Barth D, Krenek S, Fokin SI, Berendonk TU. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J. Eukaryot. Microbiol. 2006;53:20–25. doi: 10.1111/j.1550-7408.2005.00068.x. PubMed DOI
Gao F, et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata) Sci. Rep. 2016;6:24874. doi: 10.1038/srep24874. PubMed DOI PMC
Lynn DH, Strüder‐Kypke MC. Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. J. Eukaryot. Microbiol. 2006;53:385–387. doi: 10.1111/j.1550-7408.2006.00116.x. PubMed DOI
Santoferrara LF, McManus GB, Alder VA. Utility of genetic markers and morphology for species discrimination within the order Tintinnida (Ciliophora, Spirotrichea) Protist. 2013;164:24–36. doi: 10.1016/j.protis.2011.12.002. PubMed DOI
Stoeck T, Przybos E, Dunthorn M. The D1‐D2 region of the large subunit ribosomal DNA as barcode for ciliates. Mol. Ecol. Resour. 2014;14:458–468. doi: 10.1111/1755-0998.12195. PubMed DOI
Yi Z, et al. Molecular phylogeny of Pseudokeronopsis (Protozoa, Ciliophora, Urostylida), with reconsideration of three closely related species at inter- and intra-specific levels inferred from the small subunit ribosomal RNA gene and the ITS1-5.8S-ITS2 region sequences. J. Zool. 2008;275:268–275. doi: 10.1111/j.1469-7998.2008.00438.x. DOI
Yi Z, Katz LA, Song W. Assessing whether alpha-tubulin sequences are suitable for phylogenetic reconstruction of Ciliophora with insights into its evolution in euplotids. PLoS One. 2012;7:e40635. doi: 10.1371/journal.pone.0040635. PubMed DOI PMC
Zhang Q, Simpson A, Song W. Insights into the phylogeny of systematically controversial haptorian ciliates (Ciliophora, Litostomatea) based on multigene analyses. Proc. R. Soc. B. 2012;279:2625–2635. doi: 10.1098/rspb.2011.2688. PubMed DOI PMC
Townsend TM, et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogenet. Evol. 2011;61:363–380. doi: 10.1016/j.ympev.2011.07.008. PubMed DOI
Rajter Ľ, Vďačný P. Selection and paucity of phylogenetic signal challenge the utility of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans (Protista, Ciliophora) Mol. Phylogenet. Evol. 2018;127:534–544. doi: 10.1016/j.ympev.2018.05.011. PubMed DOI
Drummond, A. J. & Bouckaret, R. R. BayesianEvolutionaryAnalysis with BEAST (Cambridge University Press, 2015).
Esteban GF, Bradley MW, Finlay BJ. A case-building Spirostomum (Ciliophora, Heterotrichida) with zoochlorellae. Eur. J. Protistol. 2009;45:156–158. doi: 10.1016/j.ejop.2009.01.002. PubMed DOI
Vďačný P. Integrative taxonomy of ciliates: Assessment of molecular phylogenetic content and morphological homology testing. Eur. J. Protistol. 2017;61:388–398. doi: 10.1016/j.ejop.2017.02.001. PubMed DOI
Valbonesi A, Ortenzi C, Luporini P. An integrated study of the species problem in the Euplotes crassus–minuta–vannus group. J. Protozool. 1988;35:38–45. doi: 10.1111/j.1550-7408.1988.tb04073.x. DOI
Roux J. Faune infusorienne des eaux stagnantes des environs de Genève. Mém. Inst. Natn. Génev. 1901;19:1–148.
Cognato AI. Standard percent DNA sequence difference for insects does not predict species boundaries. J. Econ. Entomol. 2006;99:1037–1045. doi: 10.1093/jee/99.4.1037. PubMed DOI
Mwabvu T, Lamb J, Slotow R, Hamer M, Barraclough D. Is millipede taxonomy based on gonopod morphology too inclusive? Observations on genetic variation and cryptic speciation in Bicoxidens flavicollis (Diplopoda: Spirostreptida: Spirostreptidae) Afr. Invertebr. 2013;54:349–356. doi: 10.5733/afin.054.0203. DOI
Strüder-Kypke MC, Lynn DH. Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Syst. Biodivers. 2010;8:131–148. doi: 10.1080/14772000903507744. DOI
Wilbert N. Eine verbesserte Technik der Protargolimprägnation für Ciliaten. Mikrokosmos. 1975;64:171–179.
Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic l6S-like rRNA-coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI
Sonnenberg R, Nolte AW, Tautz D. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front. Zool. 2007;4:6. doi: 10.1186/1742-9994-4-6. PubMed DOI PMC
Kim SY, et al. Morphological and ribosomal DNA-based characterization of six Antarctic ciliate morphospecies from the Amundsen Sea with phylogenetic analyses. J. Eukaryot. Microbiol. 2013;60:497–513. doi: 10.1111/jeu.12057. PubMed DOI
Li L, et al. Does Kiitricha (Protista, Ciliophora, Spirotrichea) belong to Euplotida or represent a primordial spirotrichous taxon? With suggestion to establish a new subclass Protohypotrichia. Int. J. Syst. Evol. Microbiol. 2009;59:439–446. doi: 10.1099/ijs.0.65801-0. PubMed DOI
Kearse M, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:7–14. doi: 10.1093/nar/gkv318. PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Ver. 4 (Sinauer Associates, 2003).
Guindon S, Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Posada D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Izquierdo-Carrasco F, Smith SA, Stamatakis A. Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees. BMC Bioinform. 2011;12:470. doi: 10.1186/1471-2105-12-470. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Stamatakis, A. Phylogenetic models of rate heterogeneity: a high performance computing perspective in Proceedings 20th IEEE International Parallel & Distributed Processing Symposium (2006).
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Jones G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 2017;74:447–467. doi: 10.1007/s00285-016-1034-0. PubMed DOI
Bouckaert R, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Rambaut, A. & Drummond, A. Tracer v1.4, http://beast.bio.ed.ac.uk/Tracer (2007).
Than C, Ruths D, Nakhleh L. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 2008;9:322. doi: 10.1186/1471-2105-9-322. PubMed DOI PMC
Wen D, Yu Y, Zhu J, Nakhleh L. Inferring phylogenetic networks using PhyloNet. Syst. Biol. 2018;67:735–740. doi: 10.1093/sysbio/syy015. PubMed DOI PMC
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. PubMed DOI
Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. USA. 2010;107:9264–9269. doi: 10.1073/pnas.0913022107. PubMed DOI PMC
Yang Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 2015;61:854–865. doi: 10.1093/czoolo/61.5.854. DOI
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI
Shimodaira H. Testing regions with nonsmooth boundaries via multiscale bootstrap. J. Stat. Plan. Inference. 2008;138:1227–1241. doi: 10.1016/j.jspi.2007.04.001. DOI
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17:1246–1247. doi: 10.1093/bioinformatics/17.12.1246. PubMed DOI
Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:2455–2457. doi: 10.1093/bioinformatics/btq429. PubMed DOI PMC
Pond SL, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21:2531–2533. doi: 10.1093/bioinformatics/bti320. PubMed DOI
Pond SLK, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2004;21:676–679. doi: 10.1093/bioinformatics/bti079. PubMed DOI
Murrell B, et al. Gene-wide identification of episodic selection. Mol. Biol. Evol. 2015;32:1365–1371. doi: 10.1093/molbev/msv035. PubMed DOI PMC