Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-26170S
Grantová Agentura České Republiky
VIU-RSCABS-68/2019
Tomsk Polytechnic University
PubMed
31717943
PubMed Central
PMC6918303
DOI
10.3390/polym11111856
PII: polym11111856
Knihovny.cz E-zdroje
- Klíčová slova
- PEDOT:PSS, electrical properties, flexible film, light pattering, resistance anisotropy,
- Publikační typ
- časopisecké články MeSH
In this work, we present the method for the creation of an anisotropic electric pattern on thin poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) films through PSS grafting by azo-containing moieties followed by light-induced polymers redistribution. Thin PEDOT:PSS films were deposited on the flexible and biodegradable polylactic acid (PLLA) substrates. The light-sensitive azo-groups were grafted to PSS using the diazonium chemistry followed by annealing in methanol. Local illumination of azo-grafted PEDOT:PSS films through the lithographic mask led to the conversion of azo-moieties in Z-configuration and further creation of the lateral gradient of azo-isomers along the film surface. The concentration gradient led to the migration of PSS away from the illuminated area, increasing the PEDOT chains' concentration and the corresponding increase of local electrical conductivity in the illuminated place. Utilization of mask with linear pattern results in the appearance of conductive PEDOT-rich and non-conductive PSS-rich lines on the film surface, and final, lateral anisotropy of electric properties. Our work gives an optical lithography-based alternative to common methods for the creation of anisotropic electric properties, based on the spatial confinement of conductive polymer structures or their mechanical strains.
Zobrazit více v PubMed
Søndergaard R., Hösel M., Angmo D., Larsen-Olsen T.T., Krebs F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today. 2012;15:36–49. doi: 10.1016/S1369-7021(12)70019-6. DOI
Kim Y., Zhu J., Yeom B., Di Prima M., Kim J.-G., Yoo S.J., Uher C., Kotov N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature. 2013;500:59–63. doi: 10.1038/nature12401. PubMed DOI
Kim J., Lee J., You J., Park M.S., Al Hossain M.S., Yamauchi Y., Ho Kim J. Conductive polymers for next-generation energy storage systems: Recent progress and new functions. Mater. Horizons. 2016;3:517–535. doi: 10.1039/C6MH00165C. DOI
Zhao S., Li J., Cao D., Zhang G., Li J., Li K., Yang Y., Wang W., Jin Y., Sun R., et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces. 2017;9:12147–12164. doi: 10.1021/acsami.6b13800. PubMed DOI
Kang E.T., Neoh K.G., Tan K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998;23:277–324. doi: 10.1016/S0079-6700(97)00030-0. DOI
Shin S.R., Shin C., Memic A., Shadmehr S., Miscuglio M., Jung H.Y., Jung S.M., Bae H., Khademhosseini A., Tang X., et al. Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater. 2015;25:4486–4495. doi: 10.1002/adfm.201501379. PubMed DOI PMC
Zhang R., Chen Q., Zhen Z., Jiang X., Zhong M., Zhu H. Cellulose-templated graphene monoliths with anisotropic mechanical, thermal, and electrical properties. ACS Appl. Mater. Interfaces. 2015;7:19145–19152. doi: 10.1021/acsami.5b04808. PubMed DOI
Lee J., Han A.R., Yu H., Shin T.J., Yang C., Oh J.H. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 2013;135:9540–9547. doi: 10.1021/ja403949g. PubMed DOI
Khim D., Luzio A., Bonacchini G.E., Pace G., Lee M.J., Noh Y.Y., Caironi M. Uniaxial alignment of conjugated polymer films for high-performance organic field-effect transistors. Adv. Mater. 2018;30:1705463. doi: 10.1002/adma.201705463. PubMed DOI
Walters D.A., Casavant M.J., Qin X.C., Huffman C.B., Boul P.J., Ericson L.M., Haroz E.H., O’Connell M.J., Smith K., Colbert D.T., et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 2001;338:14–20. doi: 10.1016/S0009-2614(01)00072-0. DOI
Yamamoto N., Guzman de Villoria R., Wardle B.L. Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 2012;72:2009–2015. doi: 10.1016/j.compscitech.2012.09.006. DOI
Jou W.S., Cheng H.Z., Hsu C.F. A carbon nanotube polymer-based composite with high electromagnetic shielding. J. Electron. Mater. 2006;35:462–470. doi: 10.1007/BF02690533. DOI
Yang Z., Chen T., He R., Guan G., Li H., Qiu L., Peng H. Aligned carbon nanotube sheets for the electrodes of organic solar cells. Adv. Mater. 2011;23:5436–5439. doi: 10.1002/adma.201103509. PubMed DOI
Sun X., Chen T., Yang Z., Peng H. The alignment of carbon nanotubes: An effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013;46:539–549. doi: 10.1021/ar300221r. PubMed DOI
Zamora-Ledezma C., Blanc C., Puech N., Maugey M., Zakri C., Anglaret E., Poulin P. Conductivity anisotropy of assembled and oriented carbon nanotubes. Phys. Rev. E. 2011;84:062701. doi: 10.1103/PhysRevE.84.062701. PubMed DOI
Chen Y.F., Li J., Tan Y.J., Zhang K., Shi Y.D., Wu H., Guo S., Wang M. Low magnetic field-induced morphological regulation in isotactic polypropylene/poly(ε-caprolactone)/carbon black composites for high electrical conductivity and conductive anisotropy. Compos. Commun. 2018;9:58–62. doi: 10.1016/j.coco.2018.06.002. DOI
Wang Y., Chen Y., Gao J., Yoon H.G., Jin L., Forsyth M., Dingemans T.J., Madsen L.A. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 2016;28:2571–2578. doi: 10.1002/adma.201505183. PubMed DOI
Shi Y.D., Yu H.O., Li J., Tan Y.J., Chen Y.F., Wang M., Wu H., Guo S. Low magnetic field-induced alignment of nickel particles in segregated poly(l-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chem. Eng. J. 2018;347:472–482. doi: 10.1016/j.cej.2018.04.147. DOI
Na S.I., Wang G., Kim S.S., Kim T.W., Oh S.H., Yu B.K., Lee T., Kim D.Y. Evolution of nanomorphology and anisotropic conductivity in solvent -modified PEDOT: PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 2009;19:9045–9053. doi: 10.1039/b915756e. DOI
Feng Y., Ning N., Zhang L., Tian M., Zou H., Mi J. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. J. Chem. Phys. 2013;139:024903. doi: 10.1063/1.4812752. PubMed DOI
Nogami Y., Pouget J.P., Ishiguro T. Structure of highly conducting PF6−-doped polypyrrole. Synth. Met. 1994;62:257–263. doi: 10.1016/0379-6779(94)90214-3. DOI
Chabinyc M.L., Salleo A., Wu Y., Liu P., Ong B.S., Heeney M., McCulloch I. Lamination method for the study of interfaces in polymeric thin film transistors. J. Am. Chem. Soc. 2004;126:13928–13929. doi: 10.1021/ja044884o. PubMed DOI
Hamidi-Sakr A., Schiefer D., Covindarassou S., Biniek L., Sommer M., Brinkmann M. Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: Structural model and influence of molecular weight. Macromolecules. 2016;49:3452–3462. doi: 10.1021/acs.macromol.6b00495. DOI
Vennerberg D., Kessler M.R. Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water. Carbon. 2014;80:433–439. doi: 10.1016/j.carbon.2014.08.082. DOI
Lyutakov O., Tuma J., Prajzler V., Huttel I., Hnatowicz V., Švorčík V. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films. 2010;519:1452–1457. doi: 10.1016/j.tsf.2010.08.019. DOI
Fischer J.E., Zhou W., Vavro J., Llaguno M.C., Guthy C., Haggenmueller R., Casavant M.J., Walters D.E., Smalley R.E. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties. J. Appl. Phys. 2003;93:2157–2163. doi: 10.1063/1.1536733. DOI
Inoue Y., Suzuki Y., Minami Y., Muramatsu J., Shimamura Y., Suzuki K., Ghemes A., Okada M., Sakakibara S., Mimura H., et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon. 2011;49:2437–2443. doi: 10.1016/j.carbon.2011.02.010. DOI
Dong B., Lu N., Zelsmann M., Kehagias N., Fuchs H., Sotomayor Torres C.M., Chi L.F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006;16:1937–1942. doi: 10.1002/adfm.200600225. DOI
Mäkelä T., Haatainen T., Ahopelto J., Isotalo H. Imprinted electrically conductive patterns from a polyaniline blend. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001;19:487–489. doi: 10.1116/1.1354979. DOI
Elashnikov R., Fitl P., Svorcik V., Lyutakov O. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow. Appl. Surf. Sci. 2017;394:562–568. doi: 10.1016/j.apsusc.2016.10.074. DOI
Kim H.N., Kang D.H., Kim M.S., Jiao A., Kim D.H., Suh K.Y. Patterning methods for polymers in cell and tissue engineering. Ann. Biomed. Eng. 2012;40:1339–1355. doi: 10.1007/s10439-012-0510-y. PubMed DOI PMC
Liu C.X., Choi W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009;19:085019. doi: 10.1088/0960-1317/19/8/085019. DOI
Elashnikov R., Trelin A., Otta J., Fitl P., Mares D., Jerabek V., Svorcik V., Lyutakov O. Laser patterning of transparent polymers assisted by plasmon excitation. Soft Matter. 2018;14:4860–4865. doi: 10.1039/C8SM00418H. PubMed DOI
Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) J. Mater. Chem. 2005;15:2077–2088. doi: 10.1039/b417803n. DOI
Fujii S., Suzuki Y., Kawamata J., Tsunashima R. Large in-plane/out-of-plane anisotropic conduction in PEDOT-based hybrid films: Lamellar assemblies structured by mono-layered nanosheets. J. Mater. Chem. C. 2015;37:153–7158. doi: 10.1039/C5TC01238D. DOI
Zhou J., Fukawa T., Kimura M. Directional electromechanical properties of PEDOT/PSS films containing aligned electrospun nanofibers. Polym. J. 2011;43:849–854. doi: 10.1038/pj.2011.62. DOI
Guselnikova O.A., Postnikov P.S., Fitl P., Tomecek D., Sajdl P., Elashnikov R., Kolska Z., Chehimi M.M., Švorčík V., Lyutakov O. Tuning of PEDOT: PSS Properties Through Covalent Surface Modification. J. Polym. Sci. Part B Polym. Phys. 2017;55:378–387. doi: 10.1002/polb.24282. DOI
Kalachyova Y., Guselnikova O., Postnikov P., Fitl P., Lapcak L., Svorcik V., Lyutakov O. Reversible switching of PEDOT: PSS conductivity in the dielectric–conductive range through the redistribution of light-governing polymers. RSC Adv. 2018;8:11198–11206. doi: 10.1039/C7RA12624G. PubMed DOI PMC
Hermann D.S., Rudquist P., Ichimura K., Kudo K., Komitov L., Lagerwall S.T. Flexoelectric polarization changes induced by light in a nematic liquid crystal. Phys. Rev. E. 1997;55:2857. doi: 10.1103/PhysRevE.55.2857. DOI
Obi M., Morino S.Y., Ichimura K. Photocontrol of liquid crystal alignment by polymethacrylates with diphenylacetylene side chains. Chem. Mater. 1999;11:1293–1301. doi: 10.1021/cm981075t. DOI
Filimonov V.D., Trusova M.E., Postnikov P.S., Krasnokutskaya A.E., Lee Y.M., Hwang H.Y., Kim H., Chi K.W. Unusually stable, versatile, and pure arenediazonium tosylates: Their preparation, structures, and synthetic applicability. Org. Lett. 2008;10:3961–3964. doi: 10.1021/ol8013528. PubMed DOI
Wagner-Wysiecka E., Łukasik N., Biernat J.F., Luboch E. Azo group(s) in selected macrocyclic compounds. J. Incl. Phenom. Macrocycl. Chem. 2018;90:189–257. doi: 10.1007/s10847-017-0779-4. PubMed DOI PMC
Aleksejeva J., Reinfelde M., Teteris J. Direct surface relief pattering of azo-polymers films via holographic recording. Can. J. Phys. 2014;92:842–844. doi: 10.1139/cjp-2013-0598. DOI
Natansohn A., Rochon P., Pezolet M., Audet P., Brown D., To S. Azo polymers for reversible optical storage. 4. Cooperative motion of rigid groups in semicrystalline polymers. Macromolecules. 1994;27:2580–2585. doi: 10.1021/ma00087a029. DOI
Yager K.G., Barrett C.J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mat. Sci. 2001;5:487–494. doi: 10.1016/S1359-0286(02)00020-7. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons; Hoboken, NJ, USA: 2004.
Li P., Zhang Y., Zheng Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019;31:1902987. doi: 10.1002/adma.201902987. PubMed DOI
Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014;9:768–779. doi: 10.1038/nnano.2014.207. PubMed DOI
Zhou J., Anjum D.H., Chen L., Xu X., Ventura I.A., Jiang L., Lubineau G. The temperature-dependent microstructure of PEDOT/PSS films: Insights from morphological, mechanical and electrical analyses. J. Mater. Chem. C. 2014;2:9903–9910. doi: 10.1039/C4TC01593B. DOI
Xia F., Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014;5:4458. PubMed
Voge C.M., Kariolis M., MacDonald R.A., Stegemann J.P. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain induced matrix alignment. J. Biomed. Mater. Res. A. 2008;86:269–277. doi: 10.1002/jbm.a.32029. PubMed DOI