Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity

. 2019 Nov 11 ; 11 (11) : . [epub] 20191111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31717943

Grantová podpora
18-26170S Grantová Agentura České Republiky
VIU-RSCABS-68/2019 Tomsk Polytechnic University

In this work, we present the method for the creation of an anisotropic electric pattern on thin poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) films through PSS grafting by azo-containing moieties followed by light-induced polymers redistribution. Thin PEDOT:PSS films were deposited on the flexible and biodegradable polylactic acid (PLLA) substrates. The light-sensitive azo-groups were grafted to PSS using the diazonium chemistry followed by annealing in methanol. Local illumination of azo-grafted PEDOT:PSS films through the lithographic mask led to the conversion of azo-moieties in Z-configuration and further creation of the lateral gradient of azo-isomers along the film surface. The concentration gradient led to the migration of PSS away from the illuminated area, increasing the PEDOT chains' concentration and the corresponding increase of local electrical conductivity in the illuminated place. Utilization of mask with linear pattern results in the appearance of conductive PEDOT-rich and non-conductive PSS-rich lines on the film surface, and final, lateral anisotropy of electric properties. Our work gives an optical lithography-based alternative to common methods for the creation of anisotropic electric properties, based on the spatial confinement of conductive polymer structures or their mechanical strains.

Zobrazit více v PubMed

Søndergaard R., Hösel M., Angmo D., Larsen-Olsen T.T., Krebs F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today. 2012;15:36–49. doi: 10.1016/S1369-7021(12)70019-6. DOI

Kim Y., Zhu J., Yeom B., Di Prima M., Kim J.-G., Yoo S.J., Uher C., Kotov N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature. 2013;500:59–63. doi: 10.1038/nature12401. PubMed DOI

Kim J., Lee J., You J., Park M.S., Al Hossain M.S., Yamauchi Y., Ho Kim J. Conductive polymers for next-generation energy storage systems: Recent progress and new functions. Mater. Horizons. 2016;3:517–535. doi: 10.1039/C6MH00165C. DOI

Zhao S., Li J., Cao D., Zhang G., Li J., Li K., Yang Y., Wang W., Jin Y., Sun R., et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces. 2017;9:12147–12164. doi: 10.1021/acsami.6b13800. PubMed DOI

Kang E.T., Neoh K.G., Tan K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998;23:277–324. doi: 10.1016/S0079-6700(97)00030-0. DOI

Shin S.R., Shin C., Memic A., Shadmehr S., Miscuglio M., Jung H.Y., Jung S.M., Bae H., Khademhosseini A., Tang X., et al. Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater. 2015;25:4486–4495. doi: 10.1002/adfm.201501379. PubMed DOI PMC

Zhang R., Chen Q., Zhen Z., Jiang X., Zhong M., Zhu H. Cellulose-templated graphene monoliths with anisotropic mechanical, thermal, and electrical properties. ACS Appl. Mater. Interfaces. 2015;7:19145–19152. doi: 10.1021/acsami.5b04808. PubMed DOI

Lee J., Han A.R., Yu H., Shin T.J., Yang C., Oh J.H. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 2013;135:9540–9547. doi: 10.1021/ja403949g. PubMed DOI

Khim D., Luzio A., Bonacchini G.E., Pace G., Lee M.J., Noh Y.Y., Caironi M. Uniaxial alignment of conjugated polymer films for high-performance organic field-effect transistors. Adv. Mater. 2018;30:1705463. doi: 10.1002/adma.201705463. PubMed DOI

Walters D.A., Casavant M.J., Qin X.C., Huffman C.B., Boul P.J., Ericson L.M., Haroz E.H., O’Connell M.J., Smith K., Colbert D.T., et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 2001;338:14–20. doi: 10.1016/S0009-2614(01)00072-0. DOI

Yamamoto N., Guzman de Villoria R., Wardle B.L. Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 2012;72:2009–2015. doi: 10.1016/j.compscitech.2012.09.006. DOI

Jou W.S., Cheng H.Z., Hsu C.F. A carbon nanotube polymer-based composite with high electromagnetic shielding. J. Electron. Mater. 2006;35:462–470. doi: 10.1007/BF02690533. DOI

Yang Z., Chen T., He R., Guan G., Li H., Qiu L., Peng H. Aligned carbon nanotube sheets for the electrodes of organic solar cells. Adv. Mater. 2011;23:5436–5439. doi: 10.1002/adma.201103509. PubMed DOI

Sun X., Chen T., Yang Z., Peng H. The alignment of carbon nanotubes: An effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013;46:539–549. doi: 10.1021/ar300221r. PubMed DOI

Zamora-Ledezma C., Blanc C., Puech N., Maugey M., Zakri C., Anglaret E., Poulin P. Conductivity anisotropy of assembled and oriented carbon nanotubes. Phys. Rev. E. 2011;84:062701. doi: 10.1103/PhysRevE.84.062701. PubMed DOI

Chen Y.F., Li J., Tan Y.J., Zhang K., Shi Y.D., Wu H., Guo S., Wang M. Low magnetic field-induced morphological regulation in isotactic polypropylene/poly(ε-caprolactone)/carbon black composites for high electrical conductivity and conductive anisotropy. Compos. Commun. 2018;9:58–62. doi: 10.1016/j.coco.2018.06.002. DOI

Wang Y., Chen Y., Gao J., Yoon H.G., Jin L., Forsyth M., Dingemans T.J., Madsen L.A. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 2016;28:2571–2578. doi: 10.1002/adma.201505183. PubMed DOI

Shi Y.D., Yu H.O., Li J., Tan Y.J., Chen Y.F., Wang M., Wu H., Guo S. Low magnetic field-induced alignment of nickel particles in segregated poly(l-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chem. Eng. J. 2018;347:472–482. doi: 10.1016/j.cej.2018.04.147. DOI

Na S.I., Wang G., Kim S.S., Kim T.W., Oh S.H., Yu B.K., Lee T., Kim D.Y. Evolution of nanomorphology and anisotropic conductivity in solvent -modified PEDOT: PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 2009;19:9045–9053. doi: 10.1039/b915756e. DOI

Feng Y., Ning N., Zhang L., Tian M., Zou H., Mi J. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. J. Chem. Phys. 2013;139:024903. doi: 10.1063/1.4812752. PubMed DOI

Nogami Y., Pouget J.P., Ishiguro T. Structure of highly conducting PF6−-doped polypyrrole. Synth. Met. 1994;62:257–263. doi: 10.1016/0379-6779(94)90214-3. DOI

Chabinyc M.L., Salleo A., Wu Y., Liu P., Ong B.S., Heeney M., McCulloch I. Lamination method for the study of interfaces in polymeric thin film transistors. J. Am. Chem. Soc. 2004;126:13928–13929. doi: 10.1021/ja044884o. PubMed DOI

Hamidi-Sakr A., Schiefer D., Covindarassou S., Biniek L., Sommer M., Brinkmann M. Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: Structural model and influence of molecular weight. Macromolecules. 2016;49:3452–3462. doi: 10.1021/acs.macromol.6b00495. DOI

Vennerberg D., Kessler M.R. Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water. Carbon. 2014;80:433–439. doi: 10.1016/j.carbon.2014.08.082. DOI

Lyutakov O., Tuma J., Prajzler V., Huttel I., Hnatowicz V., Švorčík V. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films. 2010;519:1452–1457. doi: 10.1016/j.tsf.2010.08.019. DOI

Fischer J.E., Zhou W., Vavro J., Llaguno M.C., Guthy C., Haggenmueller R., Casavant M.J., Walters D.E., Smalley R.E. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties. J. Appl. Phys. 2003;93:2157–2163. doi: 10.1063/1.1536733. DOI

Inoue Y., Suzuki Y., Minami Y., Muramatsu J., Shimamura Y., Suzuki K., Ghemes A., Okada M., Sakakibara S., Mimura H., et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon. 2011;49:2437–2443. doi: 10.1016/j.carbon.2011.02.010. DOI

Dong B., Lu N., Zelsmann M., Kehagias N., Fuchs H., Sotomayor Torres C.M., Chi L.F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006;16:1937–1942. doi: 10.1002/adfm.200600225. DOI

Mäkelä T., Haatainen T., Ahopelto J., Isotalo H. Imprinted electrically conductive patterns from a polyaniline blend. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001;19:487–489. doi: 10.1116/1.1354979. DOI

Elashnikov R., Fitl P., Svorcik V., Lyutakov O. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow. Appl. Surf. Sci. 2017;394:562–568. doi: 10.1016/j.apsusc.2016.10.074. DOI

Kim H.N., Kang D.H., Kim M.S., Jiao A., Kim D.H., Suh K.Y. Patterning methods for polymers in cell and tissue engineering. Ann. Biomed. Eng. 2012;40:1339–1355. doi: 10.1007/s10439-012-0510-y. PubMed DOI PMC

Liu C.X., Choi W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009;19:085019. doi: 10.1088/0960-1317/19/8/085019. DOI

Elashnikov R., Trelin A., Otta J., Fitl P., Mares D., Jerabek V., Svorcik V., Lyutakov O. Laser patterning of transparent polymers assisted by plasmon excitation. Soft Matter. 2018;14:4860–4865. doi: 10.1039/C8SM00418H. PubMed DOI

Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) J. Mater. Chem. 2005;15:2077–2088. doi: 10.1039/b417803n. DOI

Fujii S., Suzuki Y., Kawamata J., Tsunashima R. Large in-plane/out-of-plane anisotropic conduction in PEDOT-based hybrid films: Lamellar assemblies structured by mono-layered nanosheets. J. Mater. Chem. C. 2015;37:153–7158. doi: 10.1039/C5TC01238D. DOI

Zhou J., Fukawa T., Kimura M. Directional electromechanical properties of PEDOT/PSS films containing aligned electrospun nanofibers. Polym. J. 2011;43:849–854. doi: 10.1038/pj.2011.62. DOI

Guselnikova O.A., Postnikov P.S., Fitl P., Tomecek D., Sajdl P., Elashnikov R., Kolska Z., Chehimi M.M., Švorčík V., Lyutakov O. Tuning of PEDOT: PSS Properties Through Covalent Surface Modification. J. Polym. Sci. Part B Polym. Phys. 2017;55:378–387. doi: 10.1002/polb.24282. DOI

Kalachyova Y., Guselnikova O., Postnikov P., Fitl P., Lapcak L., Svorcik V., Lyutakov O. Reversible switching of PEDOT: PSS conductivity in the dielectric–conductive range through the redistribution of light-governing polymers. RSC Adv. 2018;8:11198–11206. doi: 10.1039/C7RA12624G. PubMed DOI PMC

Hermann D.S., Rudquist P., Ichimura K., Kudo K., Komitov L., Lagerwall S.T. Flexoelectric polarization changes induced by light in a nematic liquid crystal. Phys. Rev. E. 1997;55:2857. doi: 10.1103/PhysRevE.55.2857. DOI

Obi M., Morino S.Y., Ichimura K. Photocontrol of liquid crystal alignment by polymethacrylates with diphenylacetylene side chains. Chem. Mater. 1999;11:1293–1301. doi: 10.1021/cm981075t. DOI

Filimonov V.D., Trusova M.E., Postnikov P.S., Krasnokutskaya A.E., Lee Y.M., Hwang H.Y., Kim H., Chi K.W. Unusually stable, versatile, and pure arenediazonium tosylates: Their preparation, structures, and synthetic applicability. Org. Lett. 2008;10:3961–3964. doi: 10.1021/ol8013528. PubMed DOI

Wagner-Wysiecka E., Łukasik N., Biernat J.F., Luboch E. Azo group(s) in selected macrocyclic compounds. J. Incl. Phenom. Macrocycl. Chem. 2018;90:189–257. doi: 10.1007/s10847-017-0779-4. PubMed DOI PMC

Aleksejeva J., Reinfelde M., Teteris J. Direct surface relief pattering of azo-polymers films via holographic recording. Can. J. Phys. 2014;92:842–844. doi: 10.1139/cjp-2013-0598. DOI

Natansohn A., Rochon P., Pezolet M., Audet P., Brown D., To S. Azo polymers for reversible optical storage. 4. Cooperative motion of rigid groups in semicrystalline polymers. Macromolecules. 1994;27:2580–2585. doi: 10.1021/ma00087a029. DOI

Yager K.G., Barrett C.J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mat. Sci. 2001;5:487–494. doi: 10.1016/S1359-0286(02)00020-7. DOI

Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons; Hoboken, NJ, USA: 2004.

Li P., Zhang Y., Zheng Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019;31:1902987. doi: 10.1002/adma.201902987. PubMed DOI

Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014;9:768–779. doi: 10.1038/nnano.2014.207. PubMed DOI

Zhou J., Anjum D.H., Chen L., Xu X., Ventura I.A., Jiang L., Lubineau G. The temperature-dependent microstructure of PEDOT/PSS films: Insights from morphological, mechanical and electrical analyses. J. Mater. Chem. C. 2014;2:9903–9910. doi: 10.1039/C4TC01593B. DOI

Xia F., Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014;5:4458. PubMed

Voge C.M., Kariolis M., MacDonald R.A., Stegemann J.P. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain induced matrix alignment. J. Biomed. Mater. Res. A. 2008;86:269–277. doi: 10.1002/jbm.a.32029. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...