Reversible switching of PEDOT:PSS conductivity in the dielectric-conductive range through the redistribution of light-governing polymers

. 2018 Mar 16 ; 8 (20) : 11198-11206. [epub] 20180320

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35541520

One of the biggest challenges in the field of organic electronics is the creation of flexible, stretchable, and biofavorable materials. Here the simple and repeatable method for reversible writing/erasing of arbitrary conductive pattern in conductive polymer thin film is proposed. The copolymer azo-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was synthesized to achieve reversible photo-induced local electrical switching in the insulator-semimetal range. The photoisomerization of the polymer was induced by grafting nitrobenzenediazonium tosylate to the PSS main chains. While the as-deposited PEDOT:PSS thin films showed good conductivity, the modification procedure generated polymer redistribution, resulting in an island-like PEDOT distribution and the loss of conductivity. Further local illumination (430 nm) led to the azo-isomerization redistribution of the polymer chains and the creation of a conductive pattern in the insulating polymer film. The created pattern could then be erased by illumination at a second wavelength (470 nm), which was attributed to induction of reverse azo-isomerization. In this way, the reversible writing/erasing of arbitrary conductive patterns in thin polymer films was realized.

Zobrazit více v PubMed

Zhu M. Huang Y. Deng Q. Zhou J. Pei Z. Xue Q. Huang Y. Wang Z. Li H. Huang Q. Zhi C. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with Mxene. Adv. Energy Mater. 2016;6:1600969. doi: 10.1002/aenm.201600969. DOI

Gustafsson G. Cao Y. Treacy G. M. Klavetter F. Colaneri N. Heeger A. J. Flexible Light Emitting Diode. Nature. 1992;357:477–479. doi: 10.1038/357477a0. DOI

Friend R. H. Gymer R. W. Holmes A. B. Burroughes J. H. Electroluminescence in Conjugated Polymers. Nature. 1999;397:121–128. doi: 10.1038/16393. DOI

Balan A. Baran D. Toppare L. Processable Donor-acceptor Type Electrochromes Switching Between Multicolored and Highly Transmissive States Towards Single Component RGB-based Display Devices. J. Mater. Chem. 2010;20:9861–9866. doi: 10.1039/C0JM01815E. DOI

Rahman M. A. Kumar P. Park D. S. Shim Y. B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors. 2008;8:118–141. doi: 10.3390/s8010118. PubMed DOI PMC

Kerszulis J. A. Johnson K. E. Kuepfert M. Khoshabo D. Dyer A. L. Reynolds J. R. Tuning the Painter's Palette: Subtle Steric Effects on Spectra and Colour in Conjugated Electrochromic Polymers. J. Mater. Chem. C. 2015;3:3211–3218. doi: 10.1039/C4TC02685C. DOI

Jensen J. Hösel M. Dyer A. L. Krebs F. C. Development and Manufacture of Polymer Based Electrochromic Devices. Adv. Funct. Mater. 2015;25:2073–2090. doi: 10.1002/adfm.201403765. DOI

Ohko O. Y. Tatsuma T. Fujii T. Naoi K. Niwa C. Kubota Y. Fujishima A. Multicolour Photochromism of TiO2 Films Loaded with Silver Nanoparticles. Nat. Mater. 2003;2:29–31. doi: 10.1038/nmat796. PubMed DOI

Stolichnov I. Riester S. W. E. Trodahl H. J. Setter N. Rushforth A. W. Edmonds K. W. Campion R. P. Foxon C. T. Gallagher B. L. Jungwirth T. Non-volatile Ferroelectric Control of Ferromagnetism in (Ga, Mn) As. Nat. Mater. 2008;7:464–467. doi: 10.1038/nmat2185. PubMed DOI

Ma J. Hu J. Li Z. Nan C. W. Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films. Adv. Mater. 2011;23:1062–1087. doi: 10.1002/adma.201003636. PubMed DOI

Raoux S. Wełnic W. Ielmini D. Phase Change Materials and Their Application to Non-Volatile Memories. Chem. Rev. 2009;110:240–267. doi: 10.1021/cr900040x. PubMed DOI

Liu G. Ling Q. D. Teo E. Y. H. Zhu C. X. Chan D. S. H. Neoh K. G. Kang E. T. Electrical Conductance Tuning and Bistable Switching in Poly (N-vinylcarbazole)-carbon Nanotube Composite Films. ACS Nano. 2009;3:1929–1937. doi: 10.1021/nn900319q. PubMed DOI

Shah J. Brown R. M. Towards Electronic Paper Displays Made from Microbial Cellulose. Appl. Microbiol. Biotechnol. 2005;66:352–355. doi: 10.1007/s00253-004-1756-6. PubMed DOI

Cho S. I. Lee S. B. Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application. Acc. Chem. Res. 2008;41:699–707. doi: 10.1021/ar7002094. PubMed DOI

Cho S. I. Kwon W. J. Choi S.-J. Kim P. Park S.-A. Kim J. Son S. J. Xiao R. Kim S.-H. Lee S. B. Nanotube Based Ultrafast Electrochromic Display. Adv. Mater. 2005;17:171–175. doi: 10.1002/adma.200400499. DOI

Deng H. Lin L. Ji M. Zhang S. Yang M. Fu Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014;39:627–655. doi: 10.1016/j.progpolymsci.2013.07.007. DOI

Yao S. Zhu Y. Nanomaterial Enabled Stretchable Conductors: Strategies, Materials and Devices. Adv. Mater. 2015;27:1480–1511. doi: 10.1002/adma.201404446. PubMed DOI

Kim E. Lee H. W. Photo-induced Electrical Switching Through a Mainchain Polymer. J. Mater. Chem. 2006;16:1384–1389. doi: 10.1039/B517175J. DOI

Choi H. Lee H. Kang Y. Kim E. Kang S. O. Ko J. Photochromism and Electrical Transport Characteristics of a Dyad and a Polymer with Diarylethene and Quinoline Units. J. Org. Chem. 2005;70:8291–8297. doi: 10.1021/jo050710t. PubMed DOI

Hu C. W. Kawamoto T. Tanaka H. Takahashi A. Lee K.-M. Kao S.-Y. Liao Y.-C. Ho K.-C. Water Processable Prussian Blue-polyaniline: Polystyrene Sulfonate Nanocomposite (PB-PANI: PSS) for Multi-color Electrochromic Applications. J. Mater. Chem. C. 2016;4:10293–10300. doi: 10.1039/C6TC03351B. DOI

Guiseppi-Elie A. Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI

Russew M. M. Hecht S. Photoswitches: from Molecules to Materials. Adv. Mater. 2010;22:3348–3360. doi: 10.1002/adma.200904102. PubMed DOI

Peters M. V. Stoll R. S. Kühn A. Hecht S. Photoswitching of Basicity. Angew. Chem., Int. Ed. 2008;47:5968–5972. doi: 10.1002/anie.200802050. PubMed DOI

Yagai S. Ishiwatari K. Lin X. Karatsu T. Kitamura A. Uemura S. Chem.–Eur. J. 2013;19:6971. doi: 10.1002/chem.201300282. PubMed DOI

Kawai T. Nakashima Y. Irie M. A Novel Photoresponsive π-conjugated Polymer Based on Diarylethene and its Photoswitching Effect in Electrical Conductivity. Adv. Mater. 2005;17:309–314. doi: 10.1002/adma.200400191. DOI

Kim E. Kang J.-W. Luo J. Chen B. Ka J.-W. Jang S.-H. Tucker N. Shi Z. Haller M. Hau S. Jen A. K.-Y. A Novel Approach to Achieve Highly Efficient Nonlinear Optical Polymers from Guest-host Systems. Proc. SPIE-Int. Soc. Opt. Eng. 2005;5935:593505. doi: 10.1117/12.621324. DOI

Xu G. Yang Q.-D. Wang F.-Y. Zhang W.-F. Tang Y.-B. Wong N.-B. Lee S.-T. Zhang W.-J. Lee C.-S. Core/sheath Organic Nanocable Constructed with a Master-slave Molecular Pair for Optically Switched Memories. Adv. Mater. 2011;23:5059–5063. doi: 10.1002/adma.201102892. PubMed DOI

Kobatake S. Irie M. Synthesis and Photochromic Reactivity of a Diarylethene Dimer Linked by a Phenyl Group. Tetrahedron. 2003;59:8359–8364. doi: 10.1016/j.tet.2003.08.061. DOI

Filimonov V. D. Trusova M. Postnikov P. Krasnokutskaya E. A. Lee Y. M. Hwang H. Y. Kim H. Chi K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008;18:3961–3964. doi: 10.1021/ol8013528. PubMed DOI

Guselnikova O. A. Postnikov P. S. Fitl P. Tomecek D. Sajdl P. Elashnikov R. Kolska Z. Chehimi M. M. Švorčík V. Lyutakov O. Tuning of PEDOT: PSS Properties Through Covalent Surface Modification. J. Polym. Sci., Part B: Polym. Phys. 2017;55:378–387. doi: 10.1002/polb.24282. DOI

Nardes A. M. Kemerink M. Janssen R. A. Bastiaansen J. A. Kiggen N. M. van Breemen Langeveld B. M. Albert J. J. M. De Kok M. M. Microscopic Understanding of the Anisotropic Conductivity of PEDOT: PSS Thin Films. Adv. Mater. 2007;19:1196–1200. doi: 10.1002/adma.200602575. DOI

Yeung C. L. Charlesworth S. Iqbal P. Bowen J. Preece J. A. Mendes P. M. Different Formation Kinetics and Photoisomerization Behavior of Self-assembled Monolayers of Thiols and Dithiolanes Bearing Azobenzene Moieties. Phys. Chem. Chem. Phys. 2013;15:11014–11024. doi: 10.1039/C3CP42104J. PubMed DOI

Socrates G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn, 2004, p. 68

Yager K. G. Barrett C. J. All-optical Patterning of Azo Polymer Films. Curr. Opin. Solid State Mater. Sci. 2001;5:487–494. doi: 10.1016/S1359-0286(02)00020-7. DOI

Lyutakov O. Tůma J. Huttel I. Prajzler V. Siegel J. Švorčík V. Polymer Surface Patterning by Laser Scanning. Appl. Phys. B. 2013;110:539–549. doi: 10.1007/s00340-012-5291-3. DOI

Chen X. Zhang Y. Liu B. Zhang J. Wang H. Zhang W. Chen Q. Pei S. Jiang Z. Novel Photoactive Hyperbranched Poly (aryl ether)s Containing Azobenzene Chromophores for Optical Storage. J. Mater. Chem. 2008;18:5019–5026. doi: 10.1039/B807956K. DOI

Baldus O. Leopold A. Hagen R. Bieringer T. Zilker S. C. Surface Relief Gratings Generated by Pulsed Holography: A Simple Way to Polymer Nanostructures Without Isomerizing Side-Chains. J. Chem. Phys. 2001;114:1344–1349. doi: 10.1063/1.1332789. DOI

Lefin P. Fiorini C. Nunzi J. M. Anisotropy of the Photoinduced Translation Diffusion of Azo-dyes. Opt. Mater. 1998;9:323–328. doi: 10.1016/S0925-3467(97)00100-6. DOI

Barrett C. J. Rochon P. L. Natansohn A. L. Model of Laser-driven Mass Transport in thin Films of Dye-functionalized Polymers. J. Chem. Phys. 1998;109:1505–1516. doi: 10.1063/1.476701. DOI

Pedersen T. G. Johansen P. M. Holme N. C. R. Ramanujam P. S. Hvilsted S. Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-chain Azobenzene Polymers. Phys. Rev. Lett. 1998;80:89–92. doi: 10.1103/PhysRevLett.80.89. DOI

Leopold A. Wolff J. Baldus O. Huber M. R. Bieringer T. Zilker S. J. Thermally Induced Surface Relief Gratings in Azobenzene Polymers. J. Chem. Phys. 2000;113:833–837. doi: 10.1063/1.481858. DOI

Bian S. Liu W. Williams J. Samuelson L. Kumar J. Tripathy S. Photoinduced Surface Relief Grating on Amorphous Poly (4-phenylazophenol) Films. Chem. Mater. 2000;12:1585–1590. doi: 10.1021/cm000071x. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity

. 2019 Nov 11 ; 11 (11) : . [epub] 20191111

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...