Reversible switching of PEDOT:PSS conductivity in the dielectric-conductive range through the redistribution of light-governing polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35541520
PubMed Central
PMC9078990
DOI
10.1039/c7ra12624g
PII: c7ra12624g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
One of the biggest challenges in the field of organic electronics is the creation of flexible, stretchable, and biofavorable materials. Here the simple and repeatable method for reversible writing/erasing of arbitrary conductive pattern in conductive polymer thin film is proposed. The copolymer azo-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was synthesized to achieve reversible photo-induced local electrical switching in the insulator-semimetal range. The photoisomerization of the polymer was induced by grafting nitrobenzenediazonium tosylate to the PSS main chains. While the as-deposited PEDOT:PSS thin films showed good conductivity, the modification procedure generated polymer redistribution, resulting in an island-like PEDOT distribution and the loss of conductivity. Further local illumination (430 nm) led to the azo-isomerization redistribution of the polymer chains and the creation of a conductive pattern in the insulating polymer film. The created pattern could then be erased by illumination at a second wavelength (470 nm), which was attributed to induction of reverse azo-isomerization. In this way, the reversible writing/erasing of arbitrary conductive patterns in thin polymer films was realized.
Zobrazit více v PubMed
Zhu M. Huang Y. Deng Q. Zhou J. Pei Z. Xue Q. Huang Y. Wang Z. Li H. Huang Q. Zhi C. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with Mxene. Adv. Energy Mater. 2016;6:1600969. doi: 10.1002/aenm.201600969. DOI
Gustafsson G. Cao Y. Treacy G. M. Klavetter F. Colaneri N. Heeger A. J. Flexible Light Emitting Diode. Nature. 1992;357:477–479. doi: 10.1038/357477a0. DOI
Friend R. H. Gymer R. W. Holmes A. B. Burroughes J. H. Electroluminescence in Conjugated Polymers. Nature. 1999;397:121–128. doi: 10.1038/16393. DOI
Balan A. Baran D. Toppare L. Processable Donor-acceptor Type Electrochromes Switching Between Multicolored and Highly Transmissive States Towards Single Component RGB-based Display Devices. J. Mater. Chem. 2010;20:9861–9866. doi: 10.1039/C0JM01815E. DOI
Rahman M. A. Kumar P. Park D. S. Shim Y. B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors. 2008;8:118–141. doi: 10.3390/s8010118. PubMed DOI PMC
Kerszulis J. A. Johnson K. E. Kuepfert M. Khoshabo D. Dyer A. L. Reynolds J. R. Tuning the Painter's Palette: Subtle Steric Effects on Spectra and Colour in Conjugated Electrochromic Polymers. J. Mater. Chem. C. 2015;3:3211–3218. doi: 10.1039/C4TC02685C. DOI
Jensen J. Hösel M. Dyer A. L. Krebs F. C. Development and Manufacture of Polymer Based Electrochromic Devices. Adv. Funct. Mater. 2015;25:2073–2090. doi: 10.1002/adfm.201403765. DOI
Ohko O. Y. Tatsuma T. Fujii T. Naoi K. Niwa C. Kubota Y. Fujishima A. Multicolour Photochromism of TiO2 Films Loaded with Silver Nanoparticles. Nat. Mater. 2003;2:29–31. doi: 10.1038/nmat796. PubMed DOI
Stolichnov I. Riester S. W. E. Trodahl H. J. Setter N. Rushforth A. W. Edmonds K. W. Campion R. P. Foxon C. T. Gallagher B. L. Jungwirth T. Non-volatile Ferroelectric Control of Ferromagnetism in (Ga, Mn) As. Nat. Mater. 2008;7:464–467. doi: 10.1038/nmat2185. PubMed DOI
Ma J. Hu J. Li Z. Nan C. W. Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films. Adv. Mater. 2011;23:1062–1087. doi: 10.1002/adma.201003636. PubMed DOI
Raoux S. Wełnic W. Ielmini D. Phase Change Materials and Their Application to Non-Volatile Memories. Chem. Rev. 2009;110:240–267. doi: 10.1021/cr900040x. PubMed DOI
Liu G. Ling Q. D. Teo E. Y. H. Zhu C. X. Chan D. S. H. Neoh K. G. Kang E. T. Electrical Conductance Tuning and Bistable Switching in Poly (N-vinylcarbazole)-carbon Nanotube Composite Films. ACS Nano. 2009;3:1929–1937. doi: 10.1021/nn900319q. PubMed DOI
Shah J. Brown R. M. Towards Electronic Paper Displays Made from Microbial Cellulose. Appl. Microbiol. Biotechnol. 2005;66:352–355. doi: 10.1007/s00253-004-1756-6. PubMed DOI
Cho S. I. Lee S. B. Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application. Acc. Chem. Res. 2008;41:699–707. doi: 10.1021/ar7002094. PubMed DOI
Cho S. I. Kwon W. J. Choi S.-J. Kim P. Park S.-A. Kim J. Son S. J. Xiao R. Kim S.-H. Lee S. B. Nanotube Based Ultrafast Electrochromic Display. Adv. Mater. 2005;17:171–175. doi: 10.1002/adma.200400499. DOI
Deng H. Lin L. Ji M. Zhang S. Yang M. Fu Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014;39:627–655. doi: 10.1016/j.progpolymsci.2013.07.007. DOI
Yao S. Zhu Y. Nanomaterial Enabled Stretchable Conductors: Strategies, Materials and Devices. Adv. Mater. 2015;27:1480–1511. doi: 10.1002/adma.201404446. PubMed DOI
Kim E. Lee H. W. Photo-induced Electrical Switching Through a Mainchain Polymer. J. Mater. Chem. 2006;16:1384–1389. doi: 10.1039/B517175J. DOI
Choi H. Lee H. Kang Y. Kim E. Kang S. O. Ko J. Photochromism and Electrical Transport Characteristics of a Dyad and a Polymer with Diarylethene and Quinoline Units. J. Org. Chem. 2005;70:8291–8297. doi: 10.1021/jo050710t. PubMed DOI
Hu C. W. Kawamoto T. Tanaka H. Takahashi A. Lee K.-M. Kao S.-Y. Liao Y.-C. Ho K.-C. Water Processable Prussian Blue-polyaniline: Polystyrene Sulfonate Nanocomposite (PB-PANI: PSS) for Multi-color Electrochromic Applications. J. Mater. Chem. C. 2016;4:10293–10300. doi: 10.1039/C6TC03351B. DOI
Guiseppi-Elie A. Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI
Russew M. M. Hecht S. Photoswitches: from Molecules to Materials. Adv. Mater. 2010;22:3348–3360. doi: 10.1002/adma.200904102. PubMed DOI
Peters M. V. Stoll R. S. Kühn A. Hecht S. Photoswitching of Basicity. Angew. Chem., Int. Ed. 2008;47:5968–5972. doi: 10.1002/anie.200802050. PubMed DOI
Yagai S. Ishiwatari K. Lin X. Karatsu T. Kitamura A. Uemura S. Chem.–Eur. J. 2013;19:6971. doi: 10.1002/chem.201300282. PubMed DOI
Kawai T. Nakashima Y. Irie M. A Novel Photoresponsive π-conjugated Polymer Based on Diarylethene and its Photoswitching Effect in Electrical Conductivity. Adv. Mater. 2005;17:309–314. doi: 10.1002/adma.200400191. DOI
Kim E. Kang J.-W. Luo J. Chen B. Ka J.-W. Jang S.-H. Tucker N. Shi Z. Haller M. Hau S. Jen A. K.-Y. A Novel Approach to Achieve Highly Efficient Nonlinear Optical Polymers from Guest-host Systems. Proc. SPIE-Int. Soc. Opt. Eng. 2005;5935:593505. doi: 10.1117/12.621324. DOI
Xu G. Yang Q.-D. Wang F.-Y. Zhang W.-F. Tang Y.-B. Wong N.-B. Lee S.-T. Zhang W.-J. Lee C.-S. Core/sheath Organic Nanocable Constructed with a Master-slave Molecular Pair for Optically Switched Memories. Adv. Mater. 2011;23:5059–5063. doi: 10.1002/adma.201102892. PubMed DOI
Kobatake S. Irie M. Synthesis and Photochromic Reactivity of a Diarylethene Dimer Linked by a Phenyl Group. Tetrahedron. 2003;59:8359–8364. doi: 10.1016/j.tet.2003.08.061. DOI
Filimonov V. D. Trusova M. Postnikov P. Krasnokutskaya E. A. Lee Y. M. Hwang H. Y. Kim H. Chi K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008;18:3961–3964. doi: 10.1021/ol8013528. PubMed DOI
Guselnikova O. A. Postnikov P. S. Fitl P. Tomecek D. Sajdl P. Elashnikov R. Kolska Z. Chehimi M. M. Švorčík V. Lyutakov O. Tuning of PEDOT: PSS Properties Through Covalent Surface Modification. J. Polym. Sci., Part B: Polym. Phys. 2017;55:378–387. doi: 10.1002/polb.24282. DOI
Nardes A. M. Kemerink M. Janssen R. A. Bastiaansen J. A. Kiggen N. M. van Breemen Langeveld B. M. Albert J. J. M. De Kok M. M. Microscopic Understanding of the Anisotropic Conductivity of PEDOT: PSS Thin Films. Adv. Mater. 2007;19:1196–1200. doi: 10.1002/adma.200602575. DOI
Yeung C. L. Charlesworth S. Iqbal P. Bowen J. Preece J. A. Mendes P. M. Different Formation Kinetics and Photoisomerization Behavior of Self-assembled Monolayers of Thiols and Dithiolanes Bearing Azobenzene Moieties. Phys. Chem. Chem. Phys. 2013;15:11014–11024. doi: 10.1039/C3CP42104J. PubMed DOI
Socrates G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn, 2004, p. 68
Yager K. G. Barrett C. J. All-optical Patterning of Azo Polymer Films. Curr. Opin. Solid State Mater. Sci. 2001;5:487–494. doi: 10.1016/S1359-0286(02)00020-7. DOI
Lyutakov O. Tůma J. Huttel I. Prajzler V. Siegel J. Švorčík V. Polymer Surface Patterning by Laser Scanning. Appl. Phys. B. 2013;110:539–549. doi: 10.1007/s00340-012-5291-3. DOI
Chen X. Zhang Y. Liu B. Zhang J. Wang H. Zhang W. Chen Q. Pei S. Jiang Z. Novel Photoactive Hyperbranched Poly (aryl ether)s Containing Azobenzene Chromophores for Optical Storage. J. Mater. Chem. 2008;18:5019–5026. doi: 10.1039/B807956K. DOI
Baldus O. Leopold A. Hagen R. Bieringer T. Zilker S. C. Surface Relief Gratings Generated by Pulsed Holography: A Simple Way to Polymer Nanostructures Without Isomerizing Side-Chains. J. Chem. Phys. 2001;114:1344–1349. doi: 10.1063/1.1332789. DOI
Lefin P. Fiorini C. Nunzi J. M. Anisotropy of the Photoinduced Translation Diffusion of Azo-dyes. Opt. Mater. 1998;9:323–328. doi: 10.1016/S0925-3467(97)00100-6. DOI
Barrett C. J. Rochon P. L. Natansohn A. L. Model of Laser-driven Mass Transport in thin Films of Dye-functionalized Polymers. J. Chem. Phys. 1998;109:1505–1516. doi: 10.1063/1.476701. DOI
Pedersen T. G. Johansen P. M. Holme N. C. R. Ramanujam P. S. Hvilsted S. Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-chain Azobenzene Polymers. Phys. Rev. Lett. 1998;80:89–92. doi: 10.1103/PhysRevLett.80.89. DOI
Leopold A. Wolff J. Baldus O. Huber M. R. Bieringer T. Zilker S. J. Thermally Induced Surface Relief Gratings in Azobenzene Polymers. J. Chem. Phys. 2000;113:833–837. doi: 10.1063/1.481858. DOI
Bian S. Liu W. Williams J. Samuelson L. Kumar J. Tripathy S. Photoinduced Surface Relief Grating on Amorphous Poly (4-phenylazophenol) Films. Chem. Mater. 2000;12:1585–1590. doi: 10.1021/cm000071x. DOI