The Influence of WEDM Parameters Setup on the Occurrence of Defects When Machining Hardox 400 Steel

. 2019 Nov 15 ; 12 (22) : . [epub] 20191115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31731642

Grantová podpora
LM2015041, FSI-S-17-4464 Vysoké Učení Technické v Brně
LO1207 Univerzite Jan Evangelista Purkyne v Ústí nad Labem

The unconventional technology wire electrical discharge machining is a highly used technology for producing precise and indented shaped parts of all materials that are at least electrically conductive. Its wide use makes this technology applicable in almost all branches of industry, even in the automotive industry, where the abrasion resistant material under investigation Hardox 400 steel is widely used for the manufacturing of truck bodies. The aim of this study was a comprehensive analysis of the machinability of this material using WEDM employing a 33-round experiment. Based on the change in machine parameters (pulse off time, gap voltage, discharge current, pulse on time, and wire feed), the cutting speed, the topography of machined surfaces, and the chemical composition of the workpiece surface, the morphology and condition of the subsurface layer including lamella production and a subsequent determination of the distribution of individual elements in the given area were analyzed. It has been found that during the machining of this steel, many defects occur in the subsurface layer of the material in the form of cracks with a depth of up to 22 µm and burned cavities. However, by appropriately adjusting the machine parameters, it was possible to completely remove these cracks.

Zobrazit více v PubMed

McGeough J.A. Advanced Methods of Machining. Springer Science & Business Media; New York, NY, USA: 1988.

Knight A.W., Geoffrey B. Fundamentals of Metal Machining and Machine Tools. 3rd ed. CRC Press; New York, NY, USA: 2005.

Jain V.K. Advanced Machining Processes. Allied Publishers; New Delhi, India: 2009.

Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM) Int. J. Mach. Tool. Manu. 2003;43:1287–1300. doi: 10.1016/S0890-6955(03)00162-7. DOI

Frydman S., Pękalski G. Structure and hardness changes in welded joints of Hardox steels. Arch. Civ. Mech. Eng. 2008;8:15–27. doi: 10.1016/S1644-9665(12)60118-6. DOI

Manjaiah M., Laubscher R.F., Kumar A., Basavarajappa S. Parametric optimization of MRR and surface roughness in wire electro discharge machining (WEDM) of D2 steel using Taguchi−based utility approach. Int. J. Mech. Mater. Eng. 2016;11:7. doi: 10.1186/s40712-016-0060-4. DOI

Lusi N., Muzaka K., Soepangkat B.O.P. Parametric optimization of wire electrical discharge machining process on AISI H13 tool steel using weigthed principal component analysis (WPCA) and taguchi method. ARPN J. Eng. Appl. Sci. 2016;11:945–951.

Klocke F., Hensgen L., Klink A., Ehle L., Schwedt A. Structure and composition of the white layer in the wire−EDM process. Procedia CIRP. 2016;42:673–678. doi: 10.1016/j.procir.2016.02.300. DOI

Abdullah B., Nordin M.F.N., Basir M.H.M. Investigation on CR, MRR and SR of wire electrical discharge machining (WEDM) on high carbon steel S50C. J. Teknol. 2015;76:109–113. doi: 10.11113/jt.v76.5701. DOI

Reddy C.B., Reddy C.E., Reddy D.R. Experimental investigation of surface finish and material removal rate of P20 die−tool steel in wire−EDM using multiple regression analysis. GSTF J. Eng. Technol. (JET) 2012;1:735–744.

Sinha P., Kumar R., Singh G.K., Thomas D. Multi−objective optimization of wire EDM of AISI D3 tool steel using orthogonal array with principal component analysis. Mater. Today Proc. 2015;2:3778–3787. doi: 10.1016/j.matpr.2015.07.183. DOI

Nayak B.B., Mahapatra S.S., Chatterjee S., Abhishek K. Parametric appraisal of WEDM using harmony search algorithm. Mater. Today Proc. 2015;2:2562–2568. doi: 10.1016/j.matpr.2015.07.207. DOI

Mouralova K., Klakurkova L., Matousek R., Prokes T., Hrdy R., Kana V. Influence of the cut direction through the semi−finished product on the occurrence of cracks for X210Cr12 steel using WEDM. Arch. Civ. Mech. Eng. 2018;18:1318–1331. doi: 10.1016/j.acme.2018.04.004. DOI

Mouralova K., Kovar J., Klakurkova L., Prokes T. Effect of width of kerf on machining accuracy and subsurface layer after WEDM. J. Mater. Eng. Perform. 2018;27:1–9. doi: 10.1007/s11665-018-3239-4. DOI

Mouralova K., Benes L., Zahradnicek R., Bednar J., Hrabec P., Prokes T., Matouse R., Fiala Z. Quality of surface and subsurface layers after WEDM aluminum alloy 7475−T7351 including analysis of TEM lamella. Int. J. Adv. Manuf. Tech. 2018;99:2309–2326. doi: 10.1007/s00170-018-2626-1. DOI

Mouralova K., Kovar J., Klakurkova L., Bednar J., Benes L., Zahradnicek R. Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement. 2018;114:169–176. doi: 10.1016/j.measurement.2017.09.040. DOI

Montgomery D.C. Design and Analysis of Experiments. 8th ed. John Wiley and Sons; Hoboken, NJ, USA: 2013.

Harcarik M., Jankovych R. Relationship between values of profile and areal surface texture parameters. MM Sci. J. 2016;5:1659–1662. doi: 10.17973/MMSJ.2016_12_2016206. DOI

ISO. BSEN . “25178–2: Geometric Product Specification, Surface Texture (Areal). Part 2: Terms, Definitions and Surface Texture Parameters”. British Standards Institute; London, UK: 2012.

ISO. EN . “4287–Geometrical Product Specifications (GPS)–Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters”. International Organization for Standardization; Geneva, Switzerland: 1997.

Altuğ M. Investigation of Hardox 400 Steel exposed to heat treatment processes in WEDM. Politek. Derg. 2019;22:237–244. doi: 10.2339/politeknik.417764. DOI

Mouralova K., Kovar J., Klakurkova L., Prokes T., Horynova M. Comparison of morphology and topography of surfaces of WEDM machined structural materials. Measurement. 2017;104:12–20. doi: 10.1016/j.measurement.2017.03.009. DOI

Mouralova K., Benes L., Zahradnicek R., Bednar J., Hrabec P., Prokes T., Hrdy R. Analysis of cut orientation through half−finished product using WEDM. Mater. Manuf. Process. 2019;34:70–82. doi: 10.1080/10426914.2018.1544714. DOI

Mouralova K., Benes L., Bednar J., Zahradnicek R., Prokes T., Matousek R., Fiserova Z., Otoupalik J. Using a DoE for a comprehensive analysis of the surface quality and cutting speed in WED−machined hadfield steel. J. Mech. Sci. Technol. 2019;33:1–16. doi: 10.1007/s12206-019-0437-4. DOI

Huang C.A., Hsu F.Y., Yao S.J. Microstructure analysis of the martensitic stainless steel surface fine−cut by the wire electrode discharge machining (WEDM) Mater. Sci. Eng. A. 2004;371:119–126. doi: 10.1016/j.msea.2003.10.277. DOI

Huang C.A., Hsu C.C., Kuo H.H. The surface characteristics of P/M high−speed steel (ASP 23) multi−cut with wire electrical discharge machine (WEDM) J. Mater. Process Tech. 2003;140:298–302. doi: 10.1016/S0924-0136(03)00765-9. DOI

Kovar K.J., Zahradnicek R. Machining of highly oriented pyrolitic graphite using WEDM and the resulting quality of the surface. MM Sci. J. 2016;6:1621–1624.

Mouralova K., Prokes T., Benes L. Surface and subsurface layers defects analysis after WEDM affecting the subsequent lifetime of produced components. Arab. J. Sci. Eng. 2019;44:1–13. doi: 10.1007/s13369-019-03887-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...