Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FW03010044
Technology Agency of the Czech Republic
LM2018110
Brno University of Technology
FSI-S-20-6187
Brno University of Technology
CZ.02.1.01/0.0/0.0/17_049/0008397
Jan Evangelista Purkyně University in Ústí nad Labem
PubMed
36614437
PubMed Central
PMC9821618
DOI
10.3390/ma16010100
PII: ma16010100
Knihovny.cz E-zdroje
- Klíčová slova
- Ampcoloy, WEDM, cutting speed, design of experiment, machining parameters, surface topography,
- Publikační typ
- časopisecké články MeSH
Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys are commonly used as electrodes for their high thermal conductivity. The subject of this study was creating mathematical models for the machining optimization of Ampcoloy 35 with different thicknesses (ranging from 5 to 160 mm with a step of 5 mm) using WEDM to improve the surface properties of the mold parts. The Box-Behnken type experiment was used with a total of 448 samples produced. The following machining parameters were altered over the course of the experiment: the pulse on and off time, discharge current, and material thickness. The cutting speed was measured, and the topography of the machined surfaces in the center and at the margins of the samples was analyzed. The morphology and subsurface layer were also studied. What makes this study unique is the large number of the tested thicknesses, ranging from 5 to 160 mm with a step of 5 mm. The contribution of this study to the automotive industry and plastic injection mold production is, therefore, significant. The regression models for the cutting speed and surface topography allow for efficient defect-free machining of Ampcoloy 35 of 5-160 mm thicknesses, both on the surface and in the subsurface layer.
Zobrazit více v PubMed
Asgar M.E., Singholi A.K.S. Parameter study and optimization of WEDM process: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018;404:012007. doi: 10.1088/1757-899X/404/1/012007. DOI
Matoušek R. Nature Inspired Cooperative Strategies for Optimization. Springer; Berlin/Heidelberg, Germany: 2008. GAHC: Improved genetic algorithm; pp. 507–520.
Vijayabhaskar S., Rajmohan T., Sisir T.P., Abishek J.P., Reddy R.M. Review of WEDM studies on metal matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 2018;390:012051. doi: 10.1088/1757-899X/390/1/012051. DOI
Conde A., Sánchez J.A., Plaza S., Olivenza M., Ramos J.M. An industrial system for estimation of workpiece height in WEDM. Procedia Eng. 2015;132:647–654. doi: 10.1016/j.proeng.2015.12.543. DOI
High Conductivity Copper Alloys. [(accessed on 20 February 2022)]. Available online: https://www.ampcometal.com/documents/AMPCO_PLASTIC_INDUSTRY_BROCHURE.pdf.
Lipa M., Durocher A., Tivey R., Huber T., Schedler B., Weigert J. The use of copper alloy CuCrZr as a structural material for actively cooled plasma facing and in vessel components. Fusion Eng. Des. 2005;75:469–473. doi: 10.1016/j.fusengdes.2005.06.056. DOI
Wu C., Wu X., Zhao H., Xu B., Zhu L., Liu Y., Gao C. Effect of sub-millimetre morphologies on the hydrophobicity of a copper surface prepared by WEDM. Surf. Coat. Technol. 2020;385:125455. doi: 10.1016/j.surfcoat.2020.125455. DOI
Ahmed N., Mughal M.P., Shoaib W., Raza S.F., Alahmari A.M. WEDM of copper for the fabrication of large surface-area micro-channels: A prerequisite for the high heat-transfer rate. Micromachines. 2020;11:173. doi: 10.3390/mi11020173. PubMed DOI PMC
Satishkumar P., Murthi C.S., Meenakshi R. Optimization of machining parameters in wire EDM of OFHC copper using Taguchi analysis. Mater. Today Proc. 2021;37:922–928. doi: 10.1016/j.matpr.2020.06.120. DOI
Li W.M. Experimental study on cutting speed and surface roughness of pure copper in WEDM. J. Phys. Conf. Ser. 2020;1605:012054. doi: 10.1088/1742-6596/1605/1/012054. DOI
Sathiyaraj S., Venkatesan S., Ashokkumar S. Wire electrical discharge machining (WEDM) analysis into MRR and SR on copper alloy. Mater. Today Proc. 2020;33:1079–1084. doi: 10.1016/j.matpr.2020.07.123. DOI
Meenakshi R., Suresh P. WEDM of Cu/WC/SiC composites: Development and machining parameters using artificial immune system. J. Exp. Nanosci. 2020;15:12–25. doi: 10.1080/17458080.2019.1708331. DOI
Evran S. Surface roughness and material removal rate analyses of hard copper alloy in wire electrical discharge machining. Emerg. Mater. Res. 2020;9:730–737. doi: 10.1680/jemmr.20.00088. DOI
Wang H., Wang Y., Chi G., Yu F., Wang Z. Simulation Study on Surface Drag Reduction Performance of Beryllium Copper Alloy by EDM. Procedia CIRP. 2020;95:244–249. doi: 10.1016/j.procir.2020.02.268. DOI
Mahapatra S.S., Patnaik A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int. J. Adv. Manuf. Technol. 2007;34:911–925. doi: 10.1007/s00170-006-0672-6. DOI
Chiang K.T., Chang F.P. Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J. Mater. Process. Technol. 2006;180:96–101. doi: 10.1016/j.jmatprotec.2006.05.008. DOI
Mouralova K., Prokes T., Benes L., Bednar J. The influence of WEDM parameters setup on the occurrence of defects when machining hardox 400 steel. Materials. 2019;12:3758. doi: 10.3390/ma12223758. PubMed DOI PMC
Mouralova K., Prokes T., Benes L., Sliwkova P. Analysis of subsurface defects occurrence in abrasion resistant Creusabro steel after WEDM including the study of morphology and surface topography. Mach. Sci. Technol. 2020;24:274–290. doi: 10.1080/10910344.2019.1669166. DOI
Mouralova K., Benes L., Zahradnicek R., Bednar J., Hrabec P., Prokes T., Matousek R., Fiala Z. Quality of surface and subsurface layers after WEDM aluminum alloy 7475-T7351 including analysis of TEM lamella. Int. J. Adv. Manuf. Technol. 2018;99:2309–2326. doi: 10.1007/s00170-018-2626-1. DOI
Mouralová K., Benes L., Prokes T., Bednar J., Zahradnicek R., Fries J. Machining of pure molybdenum using WEDM. Measurement. 2020;163:108010. doi: 10.1016/j.measurement.2020.108010. DOI
International Organization for Standardization; Geneva, Switzerland: 1997. Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters.
Mouralova K., Benes L., Prokes T., Bednar J., Zahradnicek R., Jankovych R., Fries J., Vontor J. Analysis of the machinability of copper alloy ampcoloy by WEDM. Materials. 2020;13:893. doi: 10.3390/ma13040893. PubMed DOI PMC
Venkateswarlu G., Devaraj P. Optimization of Machining Parameters in Wire EDM of Copper Using Taguchi Analysis. Int. J. Adv. Mater. Res. 2015;1:126–131.
Chaudhari R., Vora J., Parikh D.M., Wankhede V., Khanna S. Multi-response optimization of WEDM parameters using an integrated approach of RSM–GRA analysis for pure titanium. J. Inst. Eng. Ser. D. 2020;101:117–126. doi: 10.1007/s40033-020-00204-7. DOI
Chaudhari R., Vora J.J., Prabu S.S.M., Palani I.A., Patel V.K., Parikh D.M., de Lacalle L.N.L. Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Materials. 2019;12:1277. doi: 10.3390/ma12081277. PubMed DOI PMC
Vignesh M., Ramanujam R. Numerical modelling and experimental validation of crater formation in WEDM hybrid turning of Ti-6Al-4V alloy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021;235:392–404. doi: 10.1177/0954408920964687. DOI
Esteves P.M., Wiessner M., Costa J.V., Sikora M., Wegener K. WEDM single crater asymmetry. Int. J. Adv. Manuf. Technol. 2021;117:2421–2427. doi: 10.1007/s00170-021-07023-4. DOI
Zhang Y., Liu Z., Pan H., Qiu M. Motion Characteristics of Discharge Channel in WEDM. Mater. Manuf. Process. 2021;36:583–598. doi: 10.1080/10426914.2020.1854462. DOI
Mouralova K., Kovar J., Klakurkova L., Prokes T., Horynova M. Comparison of morphology and topography of surfaces of WEDM machined structural materials. Measurement. 2017;104:12–20. doi: 10.1016/j.measurement.2017.03.009. DOI
Altuğ M. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis. Mater. Test. 2016;58:794–805. doi: 10.3139/120.110916. DOI
McGeough J.A. Advanced Methods of Machining. Springer Science & Business Media; Dordrecht, The Netherlands: 1988.
Reddy B.S., Rao A.K., Janardhana G.R. Multi-objective optimization of surface roughness, recast layer thickness and surface crack density in WEDM of Al2124/SiCp using desirability approach. Mater. Today Proc. 2021;39:1320–1326. doi: 10.1016/j.matpr.2020.04.563. DOI
Chaudhari R., Khanna S., Vora J., Patel V.K., Paneliya S., Pimenov D.Y., Giasin K., Wojciechowski S. Experimental investigations and optimization of MWCNTs-mixed WEDM process parameters of nitinol shape memory alloy. J. Mater. Res. Technol. 2021;15:2152–2169. doi: 10.1016/j.jmrt.2021.09.038. DOI
Chaudhari R., Vora J.J., Patel V., Lacalle L.L.D., Parikh D.M. Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy. Materials. 2020;13:4943. doi: 10.3390/ma13214943. PubMed DOI PMC
Sivakumar S., Khan M.A., Muralidharan B. Studies on surface quality of stainless steel implant material while machining with WEDM process. Int. J. Mach. Mach. Mater. 2020;22:374–385. doi: 10.1504/IJMMM.2020.109845. DOI
Farooq M.U., Ali M.A., He Y., Khan A.M., Pruncu C.I., Kashif M., Ahmed N., Asif N. Curved profiles machining of Ti6Al4V alloy through WEDM: Investigations on geometrical errors. J. Mater. Res. Technol. 2020;9:16186–16201. doi: 10.1016/j.jmrt.2020.11.067. DOI