Analysis of the Machinability of Copper Alloy Ampcoloy by WEDM
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015041
Vysoké Učení Technické v Brně
LO1207
Univerzite Jan Evangelista Purkyne v Ústí nad Labem
FSI-S-17-4464
Vysoké Učení Technické v Brně
FSI-S-19-6014
Vysoké Učení Technické v Brně
PubMed
32079249
PubMed Central
PMC7079601
DOI
10.3390/ma13040893
PII: ma13040893
Knihovny.cz E-zdroje
- Klíčová slova
- WEDM, ampcoloy, design of experiment, electrical discharge machining, machining parameters,
- Publikační typ
- časopisecké články MeSH
The unconventional technology of wire electrical discharge machining is widely used in all areas of industry. For this reason, there is always an effort for efficient machining at the lowest possible cost. For this purpose, the following comprehensive study has been carried out to optimize the machining of the copper alloy Ampcoloy 35, which is particularly useful in plastic injection moulds. Within the study, a half-factor experiment of 25-1 with 10 axial points and seven central points of a total of 33 rounds was carried out, which was focused on the response monitoring of the input factors in the form of the machine parameters setup: gap voltage, pulse on time, pulse off time, discharge current, and wire speed. Based on the study of the response in the form of cutting speed and surface topography, their statistical models were created, while the optimal setting of machine parameters was determined to maximize the cutting speed and minimize the topography parameters. Further, a detailed cross-sectional analysis of surface and subsurface layer morphology was performed using electron microscopy including chemical composition analysis. In order to study microstructural changes in the material at the atomic level, a lamella was created, which was then studied using a transmission electron microscope.
Zobrazit více v PubMed
Knight W.A., Boothroyd G. Fundamentals of Metal Machining and Machine Tools. 3rd ed. CRC Press; New York, NY, USA: 2005.
Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM) Int. J. Mach. Tools Manuf. 2003;43:1287–1300. doi: 10.1016/S0890-6955(03)00162-7. DOI
Liao Y.S., Chen S.T., Lin C.S. Development of a high precision table top versatile CNC wire-EDM for making intricate micro parts. J. Micromech. Microeng. 2004;15:245–253.
Unune D.R., Mali H.S. Experimental investigation on low-frequency vibrafon assisted micro-WEDM of Inconel 718. Eng. Sci. Technol. Int. J. 2017;20:222–231.
Kumar S.S., Uthayakumar M., Kumaran S.T., Varol T., Canakci A. Investigating the surface integrity of aluminium based composites machined by EDM. Def. Technol. 2019;15:338–343. doi: 10.1016/j.dt.2018.08.011. DOI
Feng X., Wong Y.S., Hong G.S. Characterization and geometric modeling of single and over loping cratersin micro-EDM. Mach. Sci. Technol. 2016;20:79–98. doi: 10.1080/10910344.2015.1085317. DOI
Surleraux A., Pernot J.P., Elkaseer A., Bigot S. Iterative surface warping to shape cratersin micro-EDM simulation. Eng. Comput. 2016;32:517–531. doi: 10.1007/s00366-016-0439-0. DOI
Han F., Jiang J., Yu D. Influence of discharge current on machined surfaces by thermo-analysis in finish cut of WEDM. Int. J. Mach. Tools Manuf. 2007;47:1187–1196. doi: 10.1016/j.ijmachtools.2006.08.024. DOI
Giridharan A., Samuel G.L. Modeling and analysis of crater formativ during wire electrical discharge turning (WEDT) process. Int. J. Adv. Manuf. Technol. 2015;77:1229–1247. doi: 10.1007/s00170-014-6540-x. DOI
McGeough J.A. Advanced Methods of Machining. Springer Science&Business Media; Berlin, Germany: 1988.
Mouralova K., Klakurkova L., Matousek R., Prokes T., Hrdy R., Kana V. Influence of the cut direction through the semi-finished producton the occurrence of cracks for X210Cr12 steel using WEDM. Arch. Civ. Mech. Eng. 2018;18:1318–1331. doi: 10.1016/j.acme.2018.04.004. DOI
Lipa M., Durocher A., Tivey R., Huber T., Schedler B., Weigert J. The use of copper alloy CuCrZras a structural material for actively cooled plasma facing and invessel components. Fusion Eng. Des. 2005;75:469–473. doi: 10.1016/j.fusengdes.2005.06.056. DOI
Thankachan T., Prakash K.S., Loganathan M. WEDM process parameter optimization of FSPed copper-BN composites. Mater. Manuf. Process. 2018;33:350–358. doi: 10.1080/10426914.2017.1339311. DOI
Nishida F.B., Marquardt L.S., Borges V., Santos P.H., Alves T.A. Development of a copper heat pipe with axial grooves manufactured using wire electrical discharge machining (Wire-EDM) Adv. Mater. Res. 2015;1120:1325–1329. doi: 10.4028/www.scientific.net/AMR.1120-1121.1325. DOI
Bhuiyan M., Shihab B. Development of copper based miniature electrostatic actuator using WEDM with low actuation voltage. Microsyst. Technol. 2016;22:2749–2756. doi: 10.1007/s00542-014-2360-z. DOI
Venkateswarlu G., Devaraj P. Optimization of Machining Parametersin Wire EDM of Copper Using Taguchi Analysis. Int. J. Adv. Mater. Res. 2015;1:126–131.
Ubale S.B., Deshmukh S.D., Ghosh S. Artificial Neural Network based Modelling of Wire Electrical Discharge Machining on Tungsten-Copper Composite. Mater. Today Proc. 2018;5:5655–5663. doi: 10.1016/j.matpr.2017.12.159. DOI
Rao C.V.S.P., Sarcar M.M.M. Experimental study and development of mathemtical relations for machining copper using CNC WDEDM. Mater. Sci. Res. India. 2008;5:417–422.
Mouralova K., Kovar J., Klakurkova L., Blazik P., Kalivoda M., Kousal P. Analysis of surface and subsurface layers after WEDM for Ti-6Al-4V with heat treatment. Measurement. 2018;116:556–564. doi: 10.1016/j.measurement.2017.11.053. DOI
Mouralova K., Benes L., Zahradnicek R., Bednar J., Hrabec P., Prokes T., Hrdy R. Analysis of cut orientation through half-finished product using WEDM. Mater. Manuf. Process. 2019;34:70–82. doi: 10.1080/10426914.2018.1544714. DOI
Mouralova K., Prokes T., Benes L. Surface and Subsurface Layers Defects Analysis After WEDM Affecting the Subsequent Life time of Produced Components. Arab. J. Sci. Eng. 2019;44:7723–7735. doi: 10.1007/s13369-019-03887-7. DOI
Montgomery D.C. Design and Analysis of Experiments. 8th ed. John Wiley and Sons; Hoboken, NJ, USA: 2013.
Geometrical Product Specifications (GPS)—Surface Texture: Areal-Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2012.
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 1997.
Mouralova K., Kovar J., Klakurkova L., Prokes T., Horynova M. Comparison of morfology and topography of surfaces of WEDM machined structural materials. Measurement. 2017;104:12–20. doi: 10.1016/j.measurement.2017.03.009. DOI
Kumar A., Kumar V., Kumar J. Surface crack density and recastlayer thickness analysis in WEDM process through response surface methodology. Mach. Sci. Technol. 2016;20:201–230. doi: 10.1080/10910344.2016.1165835. DOI
Zhang C. Study of small cracks on nanocomposite ceramics cut by WEDM. Int. J. Adv. Manuf. Technol. 2016;83:187–192. doi: 10.1007/s00170-015-7569-1. DOI
Yan M.T., Lai Y.P. Surface quality improvement of wire-EDM using a fine-finish power supply. Int. J. Mach. Tools Manuf. 2007;47:1686–1694. doi: 10.1016/j.ijmachtools.2007.01.006. DOI
Mouralova K., Prokes T., Benes L., Sliwkova P. Analysis of Subsurface Defects Occurrence in Abrasion Resistant Creusabro Steel after WEDM including the Study of Morphology and Surface Topography. Mach. Sci. Technol. 2019;237:721–733. doi: 10.1080/10910344.2019.1669166. DOI
WEDM Used for Machining High Entropy Alloys