• This record comes from PubMed

Global transcriptome analysis of porcine oocytes in correlation with follicle size

. 2020 Jan ; 87 (1) : 102-114. [epub] 20191117

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Although our knowledge regarding oocyte quality and development has improved significantly, the molecular mechanisms that regulate and determine oocyte developmental competence are still unclear. Therefore, the objective of this study was to identify and analyze the transcriptome profiles of porcine oocytes derived from large or small follicles using RNA high-throughput sequencing technology. RNA libraries were constructed from oocytes of large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) ovarian follicles and then sequenced in an Illumina HiSeq4000. Transcriptome analysis showed a total of 14,557 genes were commonly detected in both oocyte groups. Genes related to the cell cycle, oocyte meiosis, and quality were among the top highly expressed genes in both groups. Differential expression analysis revealed 60 up- and 262 downregulated genes in the LO compared with the SO group. BRCA2, GPLD1, ZP3, ND3, and ND4L were among the highly abundant and highly significant differentially expressed genes (DEGs). The ontological classification of DEGs indicated that protein processing in endoplasmic reticulum was the top enriched pathway. In addition, biological processes related to cell growth and signaling, gene expression regulations, cytoskeleton, and extracellular matrix organization were among the highly enriched processes. In conclusion, this study provides new insights into the global transcriptome changes and the abundance of specific transcripts in porcine oocytes in correlation with follicle size.

See more in PubMed

Antosik, P., Kempisty, B., Jackowska, M., Bukowska, D., Lianeri, M., Brussow, K. P., … Jaskowski, J. M. (2010). The morphology of porcine oocytes is associated with zona pellucida glycoprotein 3 and integrin beta 2 protein levels. Original paper Veterinarni Medicina (Vol. 55). Retrieved from http://vri.cz/docs/vetmed/55-4-154.pdf

Armstrong, D. G., Baxter, G., Gutierrez, C. G., Hogg, C. O., Glazyrin, A. L., Campbell, B. K., … Webb, R. (1998). Insulin-like growth factor binding protein -2 and -4 messenger ribonucleic acid expression in bovine ovarian follicles: Effect of gonadotropins and developmental status. Endocrinology, 139(4), 2146-2154. https://doi.org/10.1210/endo.139.4.5927

Bagg, M. A., Nottle, M. B., Armstrong, D. T., & Grupen, C. G. (2007). Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reproduction, Fertility, and Development, 19(7), 797-803. https://doi.org/10.1071/RD07018

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Biase, F. H., Everts, R. E., Oliveira, R., Santos-Biase, W. K. F., Fonseca Merighe, G. K., Smith, L. C., … Meirelles, F. V. (2014). Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage. Zygote, 22(1), 69-79. https://doi.org/10.1017/S0967199412000299

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., … Galon, J. (2009). ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091-1093. https://doi.org/10.1093/bioinformatics/btp101

Bjerregaard, B., Wrenzycki, C., Philimonenko, V. V., Hozak, P., Laurincik, J., Niemann, H., … Maddox-Hyttel, P. (2003). Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biology of Reproduction, 70(4), 925-935. https://doi.org/10.1095/biolreprod.103.020941

Catalá, M. G., Izquierdo, D., Uzbekova, S., Morató, R., Roura, M., Romaguera, R., … Paramio, M. T. (2011). Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction (Cambridge, England), 142(4), 517-527. https://doi.org/10.1530/REP-10-0528

Chen, J., Silver, D. P., Walpita, D., Cantor, S. B., Gazdar, A. F., Tomlinson, G., … Scully, R. (1998). Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Molecular Cell, 2(3), 317-328.

Clarke, H. J. (2012). Post-transcriptional control of gene expression during mouse oogenesis (pp. 1-21). Berlin, Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-642-30406-4_1

Clift, D., & Schuh, M. (2013). Restarting life: Fertilization and the transition from meiosis to mitosis. Nature Reviews Molecular Cell Biology, 14(9), 549-562. https://doi.org/10.1038/nrm3643

Davitz, M. A., Hereld, D., Shak, S., Krakow, J., Englund, P. T., & Nussenzweig, V. (1987). A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science, 238(4823), 81-84.

De La Fuente, R. (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Developmental Biology, 292(1), 1-12. https://doi.org/10.1016/j.ydbio.2006.01.008

Epifano, O., Liang, L. F., Familari, M., Moos, M. C., & Dean, J. (1995). Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development (Cambridge, England), 121(7), 1947-1956.

Ernst, E. H., Grøndahl, M. L., Grund, S., Hardy, K., Heuck, A., Sunde, L., … Lykke-Hartmann, K. (2017). Dormancy and activation of human oocytes from primordial and primary follicles: Molecular clues to oocyte regulation. Human Reproduction, 32(8), 1684-1700. https://doi.org/10.1093/humrep/dex238

Fujihara, Y., & Ikawa, M. (2016). GPI-AP release in cellular, developmental, and reproductive biology. Journal of Lipid Research, 57(4), 538-545. https://doi.org/10.1194/jlr.R063032

Gad, A., Nemcova, L., Murin, M., Kanka, J., Laurincik, J., Benc, M., … Prochazka, R. (2019). microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Molecular Reproduction and Development, 86(4), 426-439. https://doi.org/10.1002/mrd.23121

Gérard, N., & Monget, P. (1998). Intrafollicular insulin-like growth factor-binding protein levels in equine ovarian follicles during preovulatory maturation and regression. Biology of Reproduction, 58(6), 1508-1514.

Hall, M. J., Reid, J. E., Burbidge, L. A., Pruss, D., Deffenbaugh, A. M., Frye, C., … Noll, W. W. (2009). BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer, 115(10), 2222-2233. https://doi.org/10.1002/cncr.24200

Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., … Ko, M. S. H. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Human Molecular Genetics, 13(19), 2263-2278. https://doi.org/10.1093/hmg/ddh241

Han, S. J., Martins, J. P. S., Yang, Y., Kang, M. K., Daldello, E. M., & Conti, M. (2017). The translation of cyclin B1 and B2 is differentially regulated during mouse oocyte reentry into the meiotic cell cycle. Scientific Reports, 7(1), 14077. https://doi.org/10.1038/s41598-017-13688-3

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. https://doi.org/10.1038/nprot.2008.211

Humblot, P., Holm, P., Lonergan, P., Wrenzycki, C., Lequarré, A.-S., Joly, C. G., … Callesen, H. (2005). Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes. Theriogenology, 63(4), 1149-1166. https://doi.org/10.1016/j.theriogenology.2004.06.002

Huntriss, J., Hinkins, M., Oliver, B., Harris, S. E., Beazley, J. C., Rutherford, A. J., … Picton, H. M. (2004). Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Molecular Reproduction and Development, 67(3), 323-336. https://doi.org/10.1002/mrd.20030

Ireland, J. J., Murphee, R. L., & Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. Journal of Dairy Science, 63(1), 155-160. https://doi.org/10.3168/jds.S0022-0302(80)82901-8

Jones, J. I., & Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: Biological actions*. Endocrine Reviews, 16(1), 3-34. https://doi.org/10.1210/edrv-16-1-3

Kauffold, J., Amer, H. A. H., Bergfeld, U., Weber, W., & Sobiraj, A. (2005). The in vitro developmental competence of oocytes from juvenile calves is related to follicular diameter. Journal of Reproduction and Development, 51(3), 325-332. https://doi.org/10.1262/jrd.17002

Kocabas, A. M., Crosby, J., Ross, P. J., Otu, H. H., Beyhan, Z., Can, H., … Cibelli, J. B. (2006). The transcriptome of human oocytes. Proceedings of the National Academy of Sciences, 103(38), 14027-14032. https://doi.org/10.1073/pnas.0603227103

Labrecque, R., & Sirard, M.-A. (2014). The study of mammalian oocyte competence by transcriptome analysis: Progress and challenges. Molecular Human Reproduction, 20(2), 103-116. https://doi.org/10.1093/molehr/gat082

Labrecque, R., Fournier, E., & Sirard, M.-A. (2016). Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Molecular Reproduction and Development, 83(6), 558-569. https://doi.org/10.1002/mrd.22651

Labrecque, R., Lodde, V., Dieci, C., Tessaro, I., Luciano, A. M., & Sirard, M. A. (2015). Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes. Molecular Reproduction and Development, 82(6), 450-462. https://doi.org/10.1002/mrd.22494

Liu, X.-M., Wang, Y.-K., Liu, Y.-H., Yu, X.-X., Wang, P.-C., Li, X., … Yang, C.-X. (2018). Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation. Journal of Biological Chemistry, 293(5), 1767-1780. https://doi.org/10.1074/jbc.M117.809608

Lodde, V., Modina, S., Galbusera, C., Franciosi, F., & Luciano, A. M. (2007). Large-scale chromatin remodeling in germinal vesicle bovine oocytes: Interplay with gap junction functionality and developmental competence. Molecular Reproduction and Development, 74(6), 740-749. https://doi.org/10.1002/mrd.20639

Lodde, V., Modina, S., Maddox-Hyttel, P., Franciosi, F., Lauria, A., & Luciano, A. M. (2008). Oocyte morphology and transcriptional silencing in relation to chromatin remodeling during the final phases of bovine oocyte growth. Molecular Reproduction and Development, 75(5), 915-924. https://doi.org/10.1002/mrd.20824

Lodde, V., Modina, S. C., Franciosi, F., Zuccari, E., Tessaro, I., & Luciano, A. M. (2009). Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow. European Journal of Histochemistry, 53(4), 24. https://doi.org/10.4081/ejh.2009.e24

Ma, J.-Y., Li, M., Luo, Y.-B., Song, S., Tian, D., Yang, J., … Sun, Q.-Y. (2013). Maternal factors required for oocyte developmental competence in mice: Transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. Cell Cycle (Georgetown, Tex.), 12(12), 1928-1938. https://doi.org/10.4161/cc.24991

Mazerbourg, S., & Monget, P. (2018). Insulin-like growth factor binding proteins and igfbp proteases: A dynamic system regulating the ovarian folliculogenesis. Frontiers in Endocrinology, 9, 134. https://doi.org/10.3389/fendo.2018.00134

Mazerbourg, S., Bondy, C. A., Zhou, J., & Monget, P. (2003). The insulin-like growth factor system: A key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reproduction in Domestic Animals=Zuchthygiene, 38(4), 247-258.

Monniaux, D. (2016). Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology, 86(1), 41-53. https://doi.org/10.1016/j.theriogenology.2016.04.017

Monti, M., Zanoni, M., Calligaro, A., Ko, M. S. H., Mauri, P., & Redi, C. A. (2013). Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biology of Reproduction, 88(1), 2. https://doi.org/10.1095/biolreprod.112.103887

Motlik, J., Crozet, N., & Fulka, J. (1984). Meiotic competence in vitro of pig oocytes isolated from early antral follicles. Journal of Reproduction and Fertility, 72(2), 323-328.

Nuttinck, F., Charpigny, G., Mermillod, P., Loosfelt, H., Meduri, G., Freret, S., … Heyman, Y. (2004). Expression of components of the insulin-like growth factor system and gonadotropin receptors in bovine cumulus-oocyte complexes during oocyte maturation. Domestic Animal Endocrinology, 27(2), 179-195. https://doi.org/10.1016/J.DOMANIEND.2004.03.003

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27(1), 29-34.

Paczkowski, M., Yuan, Y., Fleming-Waddell, J., Bidwell, C. A., Spurlock, D., & Krisher, R. L. (2011). Alterations in the transcriptome of porcine oocytes derived from prepubertal and cyclic females is associated with developmental potential. Journal of Animal Science, 89(11), 3561-3571. https://doi.org/10.2527/jas.2011-4193

Pan, H., O'Brien, M. J., Wigglesworth, K., Eppig, J. J., & Schultz, R. M. (2005). Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Developmental Biology, 286(2), 493-506. https://doi.org/10.1016/j.ydbio.2005.08.023

Rath, D., Töpfer-Petersen, E., Michelmann, H. W., Schwartz, P., von Witzendorff, D., Ebeling, S., … Romar, R. (2006). Structural, biochemical and functional aspects of sperm-oocyte interactions in pigs. Society of Reproduction and Fertility supplement, 62, 317-330.

Ratnam, S., Mertineit, C., Ding, F., Howell, C. Y., Clarke, H. J., Bestor, T. H., … Trasler, J. M. (2002). Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Developmental Biology, 245(2), 304-314. https://doi.org/10.1006/dbio.2002.0628

Reyes, J. M., Chitwood, J. L., & Ross, P. J. (2015). RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Molecular Reproduction and Development, 82(2), 103-114. https://doi.org/10.1002/mrd.22445

Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. https://doi.org/10.1186/gb-2010-11-3-r25

Saitou, M., Kagiwada, S., & Kurimoto, K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 139(1), 15-31. https://doi.org/10.1242/dev.050849

Salviano, M. B., Collares, F. J. F., Becker, B. S., Rodrigues, B. A., & Rodrigues, J. L. (2016). Bovine non-competent oocytes (BCB-) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development. Zygote (Cambridge, England), 24(2), 245-251. https://doi.org/10.1017/S0967199415000118

Schultz, R. M., Stein, P., & Svoboda, P. (2018). The oocyte-to-embryo transition in mouse: Past, present, and future. Biology of Reproduction, 99(1), 160-174. https://doi.org/10.1093/biolre/ioy013

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303

Sharan, S. K., Pyle, A., Coppola, V., Babus, J., Swaminathan, S., Benedict, J., … Handel, M. A. (2004). BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development (Cambridge, England), 131(1), 131-142. https://doi.org/10.1242/dev.00888

Sirard, M.-A., Richard, F., Blondin, P., & Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology, 65(1), 126-136. https://doi.org/10.1016/j.theriogenology.2005.09.020

Somfai, T., Kikuchi, K., Kaneda, M., Akagi, S., Watanabe, S., Mizutani, E., … Nagai, T. (2011). Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation. Anatomia, Histologia, Embryologia, 40(5), 335-344. https://doi.org/10.1111/j.1439-0264.2011.01079.x

Sternlicht, A. L., & Schultz, R. M. (1981). Biochemical studies of mammalian oogenesis: Kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. The Journal of Experimental Zoology, 215(2), 191-200. https://doi.org/10.1002/jez.1402150209

Su, Y.-Q., Sugiura, K., Woo, Y., Wigglesworth, K., Kamdar, S., Affourtit, J., & Eppig, J. J. (2007). Selective degradation of transcripts during meiotic maturation of mouse oocytes. Developmental Biology, 302(1), 104-117. https://doi.org/10.1016/J.YDBIO.2006.09.008

Sugimura, S., Matoba, S., Hashiyada, Y., Aikawa, Y., Ohtake, M., Matsuda, H., … Imai, K. (2012). Oxidative phosphorylation-linked respiration in individual bovine oocytes. The Journal of Reproduction and Development, 58(6), 636-641.

Torner, H., Ghanem, N., Ambros, C., Hölker, M., Tomek, W., Phatsara, C., … Tesfaye, D. (2008). Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction, 135(2), 197-212. https://doi.org/10.1530/REP-07-0348

Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion, 11(5), 797-813. https://doi.org/10.1016/J.MITO.2010.09.012

Vassena, R., Mapletoft, R. J., Allodi, S., Singh, J., & Adams, G. P. (2003). Morphology and developmental competence of bovine oocytes relative to follicular status. Theriogenology, 60(5), 923-932. https://doi.org/10.1016/S0093-691X(03)00101-8

Verghese, G. M., Gutknecht, M. F., & Caughey, G. H. (2006). Prostasin regulates epithelial monolayer function: Cell-specific Gpld1-mediated secretion and functional role for GPI anchor. American Journal of Physiology-Cell Physiology, 291(6), C1258-C1270. https://doi.org/10.1152/ajpcell.00637.2005

Wang, W. H., Abeydeera, L. R., Prather, R. S., & Day, B. N. (2000). Polymerization of nonfilamentous actin into microfilaments is an important process for porcine oocyte maturation and early embryo development. Biology of Reproduction, 62(5), 1177-1183.

Wells, D., Bermudez, M. G., Steuerwald, N., Thornhill, A. R., Walker, D. L., Malter, H., … Cohen, J. (2005). Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Human Reproduction, 20(5), 1339-1348. https://doi.org/10.1093/humrep/deh778

Xu, C. F., Chambers, J. A., Nicolai, H., Brown, M. A., Hujeirat, Y., Mohammed, S., … Solomon, E. (1997). Mutations and alternative splicing of the BRCA1 gene in UK breast/ovarian cancer families. Genes, Chromosomes & Cancer, 18(2), 102-110.

Zhang, P., Kerkelä, E., Skottman, H., Levkov, L., Kivinen, K., Lahesmaa, R., … Kere, J. (2007). Distinct sets of developmentally regulated genes that are expressed by human oocytes and human embryonic stem cells. Fertility and Sterility, 87(3), 677-690. https://doi.org/10.1016/j.fertnstert.2006.07.1509

Zhang, Y., Yan, Z., Qin, Q., Nisenblat, V., Chang, H.-M., Yu, Y., … Yan, L. (2018). Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Molecular Cell, 72(6), 1021-1034. https://doi.org/10.1016/j.molcel.2018.10.029. e4

Zuccotti, M., Ponce, R. H., Boiani, M., Guizzardi, S., Govoni, P., Scandroglio, R., … Redi, C. A. (2002). The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote (Cambridge, England), 10(1), 73-78.

Zuccotti, M., Merico, V., Sacchi, L., Bellone, M., Brink, T. C., Bellazzi, R., … Adjaye, J. (2008). Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Developmental Biology, 8(1), 97. https://doi.org/10.1186/1471-213X-8-97

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...