Messenger RNAs of Yeast Virus-Like Elements Contain Non-templated 5' Poly(A) Leaders, and Their Expression Is Independent of eIF4E and Pab1

. 2019 ; 10 () : 2366. [epub] 20191030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31736885

We employed virus-like elements (VLEs) pGKL1,2 from Kluyveromyces lactis as a model to investigate the previously neglected transcriptome of the broader group of yeast cytoplasmic linear dsDNA VLEs. We performed 5' and 3' RACE analyses of all pGKL1,2 mRNAs and found them not 3' polyadenylated and containing frequently uncapped 5' poly(A) leaders that are not complementary to VLE genomic DNA. The degree of 5' capping and/or 5' mRNA polyadenylation is specific to each gene and is controlled by the corresponding promoter region. The expression of pGKL1,2 transcripts is independent of eIF4E and Pab1 and is enhanced in lsm1Δ and pab1Δ strains. We suggest a model of primitive pGKL1,2 gene expression regulation in which the degree of 5' mRNA capping and 5' non-template polyadenylation, together with the presence of negative regulators such as Pab1 and Lsm1, play important roles. Our data also support a hypothesis of a close relationship between yeast linear VLEs and poxviruses.

Zobrazit více v PubMed

Ahn B. Y., Moss B. (1989). Capped poly(A) leaders of variable lengths at the 5′ ends of vaccinia virus late mRNAs. J. Virol. 63 226–232. PubMed PMC

Altmann M., Handschin C., Trachsel H. (1987). mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. Mol. Cell. Biol. 7 998–1003. 10.1128/mcb.7.3.998 PubMed DOI PMC

Altmann M., Sonenberg N., Trachsel H. (1989). Translation in Saccharomyces cerevisiae: initiation factor 4E-Dependent cell-free system. Mol. Cell. Biol. 9 4467–4472. 10.1128/mcb.9.10.4467 PubMed DOI PMC

Altmann M., Trachsel H. (1989). Altered mRNA cap recognition activity of initiation factor 4E in the yeast cell cycle division mutant cdc33. Nucleic Acids Res. 17 5923–5931. 10.1093/nar/17.15.5923 PubMed DOI PMC

Bergman N., Moraes K. C., Anderson J. R., Zaric B., Kambach C., Schneider R. J., et al. (2007). Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts. Nat. Struct. Mol. Biol. 14 824–831. 10.1038/nsmb1287 PubMed DOI

Bernstein P., Peltz S. W., Ross J. (1989). The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9 659–670. 10.1128/mcb.9.2.659 PubMed DOI PMC

Boone R. F., Moss B. (1977). Methylated 5′-terminal sequences of vaccinia virus mRNA species made in vivo at early and late times after infection. Virology 79 67–80. 10.1016/0042-6822(77)90335-x PubMed DOI

Brenner C., Nakayama N., Goebl M., Tanaka K., Toh-e A., Matsumoto K. (1988). CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol. Cell. Biol. 8 3556–3559. 10.1128/mcb.8.8.3556 PubMed DOI PMC

Butler A. R., White J. H., Stark M. J. (1991). Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J. Gen. Microbiol. 137 1749–1757. 10.1099/00221287-137-7-1749 PubMed DOI

Costello J., Castelli L. M., Rowe W., Kershaw C. J., Talavera D., Mohammad-Qureshi S. S., et al. (2015). Global mRNA selection mechanisms for translation initiation. Genome Biol. 16:10. 10.1186/s13059-014-0559-z PubMed DOI PMC

Davison A. J., Moss B. (1989a). Structure of vaccinia virus early promoters. J. Mol. Biol. 210 749–769. 10.1016/0022-2836(89)90107-1 PubMed DOI

Davison A. J., Moss B. (1989b). Structure of vaccinia virus late promoters. J. Mol. Biol. 210 771–784. 10.1016/0022-2836(89)90108-3 PubMed DOI

de Magistris L., Stunnenberg H. G. (1988). Cis-acting sequences affecting the length of the poly(A) head of vaccinia virus late transcripts. Nucleic Acids Res. 16 3141–3156. 10.1093/nar/16.8.3141 PubMed DOI PMC

Dhungel P., Cao S., Yang Z. (2017). The 5′-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PLoS Pathog. 13:e1006602. 10.1371/journal.ppat.1006602 PubMed DOI PMC

Feketova Z., Masek T., Vopalensky V., Pospisek M. (2010). Ambiguous decoding of the CUG codon alters the functionality of the Candida albicans translation initiation factor 4E. FEMS Yeast Res. 10 558–569. 10.1111/j.1567-1364.2010.00629.x PubMed DOI

Fukuhara H. (1987). The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucleic Acids Res. 15 10046. 10.1093/nar/15.23.10046 PubMed DOI PMC

Fukuhara H. (1995). Linear DNA plasmids of yeasts. FEMS Microbiol. Lett. 131 1–9. 10.1111/j.1574-6968.1995.tb07745.x PubMed DOI

Gallie D. R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5 2108–2116. 10.1101/gad.5.11.2108 PubMed DOI

Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Veronneau S., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387–391. 10.1038/nature00935 PubMed DOI

Gietz R. D., Woods R. A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350 87–96. 10.1016/s0076-6879(02)50957-5 PubMed DOI

Gilbert W. V., Zhou K., Butler T. K., Doudna J. A. (2007). Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317 1224–1227. 10.1126/science.1144467 PubMed DOI

Gowda M., Li H., Alessi J., Chen F., Pratt R., Wang G. L. (2006). Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res. 34:e126. 10.1093/nar/gkl522 PubMed DOI PMC

Gudkov A. T., Ozerova M. V., Shiryaev V. M., Spirin A. S. (2005). 5′-poly(A) sequence as an effective leader for translation in eukaryotic cell-free systems. Biotechnol. Bioeng. 91 468–473. 10.1002/bit.20525 PubMed DOI

Gueldener U., Heinisch J., Koehler G. J., Voss D., Hegemann J. H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30:e23. PubMed PMC

Guldener U., Heck S., Fielder T., Beinhauer J., Hegemann J. H. (1996). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24 2519–2524. 10.1093/nar/24.13.2519 PubMed DOI PMC

Gunge N. (1983). Yeast DNA plasmids. Annu. Rev. Microbiol. 37 253–276. PubMed

Gunge N., Sakaguchi K. (1981). Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J. Bacteriol. 147 155–160. PubMed PMC

Gunge N., Tamaru A., Ozawa F., Sakaguchi K. (1981). Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J. Bacteriol. 145 382–390. PubMed PMC

Gunge N., Tokunaga M. (2004). “Linear DNA plasmids and killer system of Kluyveromyces lactis,” in The Mycota II, Genetics and Biotechnology, 2nd Edn, ed. Kück U., (Berlin: Springer-Verlag; ), 199–217. 10.1007/978-3-662-07426-8_11 DOI

Gunge N., Yamane C. (1984). Incompatibility of linear DNA killer plasmids pGKL1 and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J. Bacteriol. 159 533–539. PubMed PMC

Hishinuma F., Nakamura K., Hirai K., Nishizawa R., Gunge N., Maeda T. (1984). Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Res. 12 7581–7597. 10.1093/nar/12.19.7581 PubMed DOI PMC

Huang B., Johansson M. J., Bystrom A. S. (2005). An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11 424–436. 10.1261/rna.7247705 PubMed DOI PMC

Jablonowski D., Zink S., Mehlgarten C., Daum G., Schaffrath R. (2006). tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol. Microbiol. 59 677–688. 10.1111/j.1365-2958.2005.04972.x PubMed DOI

Jeske S., Meinhardt F., Klassen R. (2007). “Extranuclear inheritance: virus-like DNA-elements in yeast,” in Progress in Botany, eds Esser K., Löttge U., Beyschlag W., Murata J., (Berlin: Springer; ), 98–129. 10.1007/978-3-540-36832-8_5 DOI

Jeske S., Tiggemann M., Meinhardt F. (2006). Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol. Lett. 255 321–327. 10.1111/j.1574-6968.2005.00082.x PubMed DOI

Jiao X., Xiang S., Oh C., Martin C. E., Tong L., Kiledjian M. (2010). Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 467 608–611. 10.1038/nature09338 PubMed DOI PMC

Jung G. H., Leavitt M. C., Ito J. (1987). Yeast killer plasmid pGKL1 encodes a DNA polymerase belonging to the family B DNA polymerases. Nucleic Acids Res. 15:9088. 10.1093/nar/15.21.9088 PubMed DOI PMC

Jungfleisch J., Blasco-Moreno B., Diez J. (2016). Use of cellular decapping activators by positive-strand RNA viruses. Viruses 8:340. 10.3390/v8120340 PubMed DOI PMC

Kahvejian A., Svitkin Y. V., Sukarieh R., M’Boutchou M. N., Sonenberg N. (2005). Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19 104–113. 10.1101/gad.1262905 PubMed DOI PMC

Kamper J., Meinhardt F., Gunge N., Esser K. (1989). New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res. 17:1781. 10.1093/nar/17.4.1781 PubMed DOI PMC

Kast A., Klassen R., Meinhardt F. (2014). rRNA fragmentation induced by a yeast killer toxin. Mol. Microbiol. 91 606–617. 10.1111/mmi.12481 PubMed DOI

Kates J., Beeson J. (1970). Ribonucleic acid synthesis in vaccinia virus. I. The mechanism of synthesis and release of RNA in vaccinia cores. J. Mol. Biol. 50 1–18. 10.1016/0022-2836(70)90100-2 PubMed DOI

Klassen R., Meinhardt F. (2007). “Linear protein-primed replicating plasmids in eukaryotic microbes,” in Microbial Linear Plasmids. Microbiology Monographs, eds Meinhardt F., Klassen R., (Berlin: Springer; ), 187–226. 10.1007/7171_2007_095 DOI

Kobayashi M., Arias C., Garabedian A., Palmenberg A. C., Mohr I. (2012). Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication. J. Virol. 86 10686–10694. 10.1128/JVI.00896-12 PubMed DOI PMC

Larsen M., Gunge N., Meinhardt F. (1998). Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40 243–246. 10.1006/plas.1998.1367 PubMed DOI

Lin R. J., Kim D. H., Castanotto D., Westaway S., Rossi J. J. (1996). “RNA preparation from yeast cells,” in A Laboratory Guide to RNA: Isolation, Analysis, and Synthesis, ed. Krieg P. A., (New York, NY: Wiley-Liss; ), 43–50.

Lu J., Huang B., Esberg A., Johansson M. J., Bystrom A. S. (2005). The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11 1648–1654. 10.1261/rna.2172105 PubMed DOI PMC

Mangus D. A., Amrani N., Jacobson A. (1998). Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol. Cell. Biol. 18 7383–7396. 10.1128/mcb.18.12.7383 PubMed DOI PMC

Maruyama K., Sugano S. (1994). Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138 171–174. 10.1016/0378-1119(94)90802-8 PubMed DOI

Masek T., Valasek L., Pospisek M. (2011). Polysome analysis and RNA purification from sucrose gradients. Methods Mol. Biol. 703 293–309. 10.1007/978-1-59745-248-9_20 PubMed DOI

Masek T., Vopalensky V., Suchomelova P., Pospisek M. (2005). Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 336 46–50. 10.1016/j.ab.2004.09.010 PubMed DOI

Mayes A. E., Verdone L., Legrain P., Beggs J. D. (1999). Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 18 4321–4331. 10.1093/emboj/18.15.4321 PubMed DOI PMC

McNeel D. G., Tamanoi F. (1991). Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKl linear DNA plasmids. Proc. Natl. Acad. Sci. U.S.A. 88 11398–11402. 10.1073/pnas.88.24.11398 PubMed DOI PMC

Meineke B., Kast A., Schwer B., Meinhardt F., Shuman S., Klassen R. (2012). A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair. RNA 18 1716–1724. 10.1261/rna.034132.112 PubMed DOI PMC

Meinhardt F., Wodara C., Larsen M., Schickel J. (1994). A novel-approach to express a heterologous gene on Kluyveromyces-lactis linear killer plasmids - expression of the bacterial Aph gene from a cytoplasmic promoter fragment without in-phase fusion to the plasmid open reading frame. Plasmid 32 318–327. 10.1006/plas.1994.1071 PubMed DOI

Melo E. O., de Melo Neto O. P., Martins de Sa C. (2003). Adenosine-rich elements present in the 5′-untranslated region of PABP mRNA can selectively reduce the abundance and translation of CAT mRNAs in vivo. FEBS Lett. 546 329–334. 10.1016/s0014-5793(03)00620-3 PubMed DOI

Mokrejs M., Masek T., Vopalensky V., Hlubucek P., Delbos P., Pospisek M. (2010). IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res. 38 D131–D136. 10.1093/nar/gkp981 PubMed DOI PMC

Mukherjee C., Patil D. P., Kennedy B. A., Bakthavachalu B., Bundschuh R., Schoenberg D. R. (2012). Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell. Rep. 2 674–684. 10.1016/j.celrep.2012.07.011 PubMed DOI PMC

Mulder J., Robertson M. E., Seamons R. A., Belsham G. J. (1998). Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells. J. Virol. 72 8813–8819. PubMed PMC

Munroe D., Jacobson A. (1990). mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol. Cell. Biol. 10 3441–3455. 10.1128/mcb.10.7.3441 PubMed DOI PMC

Novák J. (2012). Dissecting the Nuclear Function of Interleukin-1alpha. MSc. Diploma thesis, Charles University, Prague.

Palfree R. G., Bussey H. (1979). Yeast killer toxin: purification and characterisation of the protein toxin from Saccharomyces cerevisiae. Eur. J. Biochem. 93 487–493. 10.1111/j.1432-1033.1979.tb12847.x PubMed DOI

Parker R. (2012). RNA degradation in Saccharomyces cerevisiae. Genetics 191 671–702. 10.1534/genetics.111.137265 PubMed DOI PMC

Partow S., Siewers V., Bjorn S., Nielsen J., Maury J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27 955–964. 10.1002/yea.1806 PubMed DOI

Patel D. D., Pickup D. J. (1987). Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5′-terminal poly(A) sequences. EMBO J. 6 3787–3794. 10.1002/j.1460-2075.1987.tb02714.x PubMed DOI PMC

Patel G. P., Ma S., Bag J. (2005). The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res. 33 7074–7089. 10.1093/nar/gki1014 PubMed DOI PMC

Pospisek M., Palkova Z. (1991). Microisolation of yeast nucleic-acids on the microtitre plate without using lytic enzymes. Nucleic Acids Res. 19 5083–5083. 10.1093/nar/19.18.5083 PubMed DOI PMC

Pospisek M., Valasek L. (2013). Polysome profile analysis–yeast. Methods Enzymol. 530 173–181. 10.1016/B978-0-12-420037-1.00009-9 PubMed DOI

Ramanathan A., Robb G. B., Chan S. H. (2016). mRNA capping: biological functions and applications. Nucleic Acids Res. 44 7511–7526. 10.1093/nar/gkw551 PubMed DOI PMC

Riback J. A., Katanski C. D., Kear-Scott J. L., Pilipenko E. V., Rojek A. E., Sosnick T. R., et al. (2017). Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168 1028.e19–1040.e19. 10.1016/j.cell.2017.02.027 PubMed DOI PMC

Romanos M. A., Boyd A. (1988). A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res. 16 7333–7350. 10.1093/nar/16.15.7333 PubMed DOI PMC

Ross J. (1995). mRNA stability in mammalian cells. Microbiol. Rev. 59 423–450. PubMed PMC

Sachs A. B., Bond M. W., Kornberg R. D. (1986). A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45 827–835. 10.1016/0092-8674(86)90557-x PubMed DOI

Sachs A. B., Davis R. W., Kornberg R. D. (1987). A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell. Biol. 7 3268–3276. 10.1128/mcb.7.9.3268 PubMed DOI PMC

Santiago T. C., Bettany A. J., Purvis I. J., Brown A. J. (1987). Messenger RNA stability in Saccharomyces cerevisiae: the influence of translation and poly(A) tail length. Nucleic Acids Res. 15 2417–2429. 10.1093/nar/15.6.2417 PubMed DOI PMC

Schaffrath R., Meacock P. A. (1995). Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 11 615–628. 10.1002/yea.320110703 PubMed DOI

Schaffrath R., Meacock P. A. (2001). An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18 1239–1247. 10.1002/yea.773 PubMed DOI

Schaffrath R., Meinhardt F., Meacock P. A. (1997). ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr. Genet. 31 190–192. 10.1007/s002940050195 PubMed DOI

Schaffrath R., Meinhardt F., Meacock P. A. (1999). Genetic manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol. Lett. 178 201–210. 10.1016/s0378-1097(99)00338-9 PubMed DOI

Schickel J., Helmig C., Meinhardt F. (1996). Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids. Nucleic Acids Res. 24 1879–1886. 10.1093/nar/24.10.1879 PubMed DOI PMC

Schmidt W. M., Mueller M. W. (1999). CapSelect: a highly sensitive method for 5′ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Res. 27:e31. PubMed PMC

Schrunder J., Gunge N., Meinhardt F. (1996). Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors. Curr. Microbiol. 33 323–330. PubMed

Schrunder J., Meinhardt F. (1995). An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid 33 139–151. PubMed

Schwer B., Mao X., Shuman S. (1998). Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res. 26 2050–2057. 10.1093/nar/26.9.2050 PubMed DOI PMC

Schwer B., Stunnenberg H. G. (1988). Vaccinia virus late transcripts generated in vitro have a poly(A) head. EMBO J. 7 1183–1190. PubMed PMC

Schwer B., Visca P., Vos J. C., Stunnenberg H. G. (1987). Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell 50 163–169. PubMed PMC

Shirokikh N. E., Spirin A. S. (2008). Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc. Natl. Acad. Sci. U.S.A. 105 10738–10743. 10.1073/pnas.0804940105 PubMed DOI PMC

Smith R. W., Gray N. K. (2010). Poly(A)-binding protein (PABP): a common viral target. Biochem. J. 426 1–12. 10.1042/BJ20091571 PubMed DOI

Song M. G., Bail S., Kiledjian M. (2013). Multiple Nudix family proteins possess mRNA decapping activity. RNA 19 390–399. 10.1261/rna.037309.112 PubMed DOI PMC

Sor F., Fukuhara H. (1985). Structure of a linear plasmid of the yeast Kluyveromyces lactis; compact organization of the killer genome. Curr. Genet. 9 147–155. 10.1007/BF00436963 DOI

Stam J. C., Kwakman J., Meijer M., Stuitje A. R. (1986). Efficient isolation of the linear DNA killer plasmid of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins. Nucleic Acids Res. 14 6871–6884. PubMed PMC

Stark M. J., Boyd A. (1986). The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J. 5 1995–2002. PubMed PMC

Stark M. J., Mileham A. J., Romanos M. A., Boyd A. (1984). Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res. 12 6011–6030. PubMed PMC

Stark M. J. R., Boyd A., Mileham A. J., Romanos M. A. (1990). The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6 1–29. 10.1002/yea.320060102 PubMed DOI

Sugisaki Y., Gunge N., Sakaguchi K., Yamasaki M., Tamura G. (1984). Characterization of a novel killer toxin encoded by a double-stranded linear DNA plasmid of Kluyveromyces lactis. Eur. J. Biochem. 141 241–245. 10.1111/j.1432-1033.1984.tb08183.x PubMed DOI

Sýkora M., Pospíšek M., Novák J., Mrvová S., Krásný L., Vopálenský V. (2018). Transcription apparatus of the yeast virus-like elements: architecture, function, and evolutionary origin. PLoS Pathog. 14:e1007377. 10.1371/journal.ppat.1007377 PubMed DOI PMC

Tahiri-Alaoui A., Zhao Y., Sadigh Y., Popplestone J., Kgosana L., Smith L. P., et al. (2014). Poly(A) binding protein 1 enhances cap-independent translation initiation of neurovirulence factor from avian herpesvirus. PLoS One 9:e114466. 10.1371/journal.pone.0114466 PubMed DOI PMC

Takeda M., Hiraishi H., Takesako T., Tanase S., Gunge N. (1996). The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmid-encoded DNA polymerase. Yeast 12 241–246. PubMed

Tamarkin-Ben-Harush A., Vasseur J. J., Debart F., Ulitsky I., Dikstein R. (2017). Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. eLife 6:e21907. 10.7554/eLife.21907 PubMed DOI PMC

Tanguay R. L., Gallie D. R. (1996). Translational efficiency is regulated by the length of the 3′ untranslated region. Mol. Cell. Biol. 16 146–156. PubMed PMC

Tarun S. Z., Jr., Sachs A. B. (1995). A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9 2997–3007. PubMed

Tiggemann M., Jeske S., Larsen M., Meinhardt F. (2001). Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18 815–825. PubMed

Tokunaga M., Kawamura A., Hishinuma F. (1989). Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res. 17 3435–3446. PubMed PMC

Tokunaga M., Wada N., Hishinuma F. (1987). Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res. 15 1031–1046. PubMed PMC

Tommasino M. (1991). Killer SYSTEM of Kluyveromyces lactis: the open reading frame 10 of the pGK12 plasmid encodes a putative DNA binding protein. Yeast 7 245–252. 10.1002/yea.320070306 PubMed DOI

Tommasino M., Ricci S., Galeotti C. L. (1988). Genome organization of the killer plasmid pGK12 from Kluyveromyces lactis. Nucleic Acids Res. 16 5863–5878. PubMed PMC

Valis K., Masek T., Novotna D., Pospisek M., Janderova B. (2006). Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway. Folia Microbiol. 51 196–202. PubMed

van Dijk E., Cougot N., Meyer S., Babajko S., Wahle E., Seraphin B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21 6915–6924. PubMed PMC

Wang Z., Jiao X., Carr-Schmid A., Kiledjian M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. U.S.A. 99 12663–12668. PubMed PMC

Wei C. M., Moss B. (1974). Methylation of newly synthesized viral messenger RNA by an enzyme in vaccinia virus. Proc. Natl. Acad. Sci. U.S.A. 71 3014–3018. PubMed PMC

Wei C. M., Moss B. (1975). Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. Proc. Natl. Acad. Sci. U.S.A. 72 318–322. PubMed PMC

Wieczorek Z., Niedzwiecka-Kornas A., Chlebicka L., Jankowska M., Kiraga K., Stepinski J., et al. (1999). Fluorescence studies on association of human translation initiation factor eIF4E with mRNA cap-analogues. Z. Naturforsch. C. 54 278–284. PubMed

Wilson D. W., Meacock P. A. (1988). Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res. 16 8097–8112. PubMed PMC

Xia X., MacKay V., Yao X., Wu J., Miura F., Ito T., et al. (2011). Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae. Genetics 189 469–478. 10.1534/genetics.111.132068 PubMed DOI PMC

Xiang S., Cooper-Morgan A., Jiao X., Kiledjian M., Manley J. L., Tong L. (2009). Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458 784–788. 10.1038/nature07731 PubMed DOI PMC

Yang Z., Martens C. A., Bruno D. P., Porcella S. F., Moss B. (2012). Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs. J. Biol. Chem. 287 31050–31060. 10.1074/jbc.M112.390054 PubMed DOI PMC

Yoshikawa K., Tanaka T., Ida Y., Furusawa C., Hirasawa T., Shimizu H. (2011). Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28 349–361. 10.1002/yea.1843 PubMed DOI

Zakharov J. A., Yurchenko L. V., Yarovot B. F. (1969). Cytoduction: the autonomous transfer of cytoplasmic hereditary factors during pairing of yeast cells. Genetika 5 136–141.

Zhong Z., Ravikumar A., Liu C. C. (2018). Tunable expression systems for orthogonal DNA replication. ACS Synth. Biol. 7 2930–2934. 10.1021/acssynbio.8b00400 PubMed DOI PMC

Zubko E. I., Zubko M. K. (2014). Deficiencies in mitochondrial DNA compromise the survival of yeast cells at critically high temperatures. Microbiol. Res. 169 185–195. 10.1016/j.micres.2013.06.011 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...