Cdx2 Animal Models Reveal Developmental Origins of Cancers

. 2019 Nov 14 ; 10 (11) : . [epub] 20191114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31739541

The Cdx2 homeobox gene is important in assigning positional identity during the finely orchestrated process of embryogenesis. In adults, regenerative responses to tissues damage can require a replay of these same developmental pathways. Errors in reassigning positional identity during regeneration can cause metaplasias-normal tissue arising in an abnormal location-and this in turn, is a well-recognized cancer risk factor. In animal models, a gain of Cdx2 function can elicit a posterior shift in tissue identity, modeling intestinal-type metaplasias of the esophagus (Barrett's esophagus) and stomach. Conversely, loss of Cdx2 function can elicit an anterior shift in tissue identity, inducing serrated-type lesions expressing gastric markers in the colon. These metaplasias are major risk factors for the later development of esophageal, stomach and colon cancer. Leukemia, another cancer in which Cdx2 is ectopically expressed, may have mechanistic parallels with epithelial cancers in terms of stress-induced reprogramming. This review will address how animal models have refined our understanding of the role of Cdx2 in these common human cancers.

Zobrazit více v PubMed

Bateson W. Materials for the Study of Variation: Treated with Especial Regard to Discontinuity in the Origin of Species. Macmillan; London, UK: New York, NY, USA: 1894. p. 598.

Garber R.L., Kuroiwa A., Gehring W.J. Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 1983;2:2027–2036. doi: 10.1002/j.1460-2075.1983.tb01696.x. PubMed DOI PMC

McGinnis W., Garber R.L., Wirz J., Kuroiwa A., Gehring W.J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell. 1984;37:403–408. doi: 10.1016/0092-8674(84)90370-2. PubMed DOI

McGinnis W., Hart C.P., Gehring W.J., Ruddle F.H. Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell. 1984;38:675–680. doi: 10.1016/0092-8674(84)90262-9. PubMed DOI

Scott M.P., Weiner A.J. Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA. 1984;81:4115–4119. doi: 10.1073/pnas.81.13.4115. PubMed DOI PMC

Lewis E.B. A gene complex controlling segmentation in Drosophila. Nature. 1978;276:565–570. doi: 10.1038/276565a0. PubMed DOI

Nusslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801. doi: 10.1038/287795a0. PubMed DOI

Wakimoto B.T., Kaufman T.C. Analysis of larval segmentation in lethal genotypes associated with the antennapedia gene complex in Drosophila melanogaster. Dev. Biol. 1981;81:51–64. doi: 10.1016/0012-1606(81)90347-X. PubMed DOI

Kappen C., Ruddle F.H. Evolution of a regulatory gene family: HOM/HOX genes. Curr. Opin. Genet. Dev. 1993;3:931–938. doi: 10.1016/0959-437X(93)90016-I. PubMed DOI

Duboule D., Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 1994;10:358–364. doi: 10.1016/0168-9525(94)90132-5. PubMed DOI

Graham A., Papalopulu N., Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell. 1989;57:367–378. doi: 10.1016/0092-8674(89)90912-4. PubMed DOI

Izpisua-Belmonte J.C., Falkenstein H., Dolle P., Renucci A., Duboule D. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J. 1991;10:2279–2289. doi: 10.1002/j.1460-2075.1991.tb07764.x. PubMed DOI PMC

Krumlauf R. Hox genes in vertebrate development. Cell. 1994;78:191–201. doi: 10.1016/0092-8674(94)90290-9. PubMed DOI

Gendron-Maguire M., Mallo M., Zhang M., Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;75:1317–1331. doi: 10.1016/0092-8674(93)90619-2. PubMed DOI

Rijli F.M., Mark M., Lakkaraju S., Dierich A., Dolle P., Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993;75:1333–1349. doi: 10.1016/0092-8674(93)90620-6. PubMed DOI

Ramirez-Solis R., Zheng H., Whiting J., Krumlauf R., Bradley A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell. 1993;73:279–294. doi: 10.1016/0092-8674(93)90229-J. PubMed DOI

Le Mouellic H., Lallemand Y., Brulet P. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell. 1992;69:251–264. doi: 10.1016/0092-8674(92)90406-3. PubMed DOI

Condie B.G., Capecchi M.R. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development. 1993;119:579–595. PubMed

Dolle P., Dierich A., LeMeur M., Schimmang T., Schuhbaur B., Chambon P., Duboule D. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell. 1993;75:431–441. doi: 10.1016/0092-8674(93)90378-4. PubMed DOI

Brooke N.M., Garcia-Fernandez J., Holland P.W. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998;392:920–922. doi: 10.1038/31933. PubMed DOI

Chourrout D., Delsuc F., Chourrout P., Edvardsen R.B., Rentzsch F., Renfer E., Jensen M.F., Zhu B., de Jong P., Steele R.E., et al. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature. 2006;442:684–687. doi: 10.1038/nature04863. PubMed DOI

Chawengsaksophak K., James R., Hammond V.E., Kontgen F., Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386:84–87. doi: 10.1038/386084a0. PubMed DOI

Subramanian V., Meyer B., Evans G.S. The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation. 1998;64:11–18. doi: 10.1046/j.1432-0436.1998.6410011.x. PubMed DOI

Van den Akker E., Forlani S., Chawengsaksophak K., de Graaff W., Beck F., Meyer B.I., Deschamps J. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development. 2002;129:2181–2193. PubMed

Van Nes J., de Graaff W., Lebrin F., Gerhard M., Beck F., Deschamps J. The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice. Development. 2006;133:419–428. doi: 10.1242/dev.02216. PubMed DOI

Auerbach O., Stout A.P., Hammond E.C., Garfinkel L. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N. Engl. J. Med. 1961;265:253–267. doi: 10.1056/NEJM196108102650601. PubMed DOI

Slack J.M. Homoeotic transformations in man: Implications for the mechanism of embryonic development and for the organization of epithelia. J. Theor. Biol. 1985;114:463–490. doi: 10.1016/S0022-5193(85)80179-X. PubMed DOI

Beck F., Chawengsaksophak K., Waring P., Playford R.J., Furness J.B. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl. Acad. Sci. USA. 1999;96:7318–7323. doi: 10.1073/pnas.96.13.7318. PubMed DOI PMC

Tamai Y., Nakajima R., Ishikawa T., Takaku K., Seldin M.F., Taketo M.M. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res. 1999;59:2965–2970. PubMed

Hu B., Chen H., Liu X., Zhang C., Cole G.J., Lee J.A., Chen X. Transgenic overexpression of cdx1b induces metaplastic changes of gene expression in zebrafish esophageal squamous epithelium. Zebrafish. 2013;10:218–227. doi: 10.1089/zeb.2012.0784. PubMed DOI PMC

Kong J., Crissey M.A., Funakoshi S., Kreindler J.L., Lynch J.P. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS ONE. 2011;6:e18280. doi: 10.1371/journal.pone.0018280. PubMed DOI PMC

Mutoh H., Satoh K., Kita H., Sakamoto H., Hayakawa H., Yamamoto H., Isoda N., Tamada K., Ido K., Sugano K. Cdx2 specifies the differentiation of morphological as well as functional absorptive enterocytes of the small intestine. Int J. Dev. Biol. 2005;49:867–871. doi: 10.1387/ijdb.052016hm. PubMed DOI

Silberg D.G., Sullivan J., Kang E., Swain G.P., Moffett J., Sund N.J., Sackett S.D., Kaestner K.H. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122:689–696. doi: 10.1053/gast.2002.31902. PubMed DOI

Jiang M., Li H., Zhang Y., Yang Y., Lu R., Liu K., Lin S., Lan X., Wang H., Wu H., et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature. 2017;550:529–533. doi: 10.1038/nature24269. PubMed DOI PMC

Balbinot C., Armant O., Elarouci N., Marisa L., Martin E., De Clara E., Onea A., Deschamps J., Beck F., Freund J.N., et al. The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms. J. Exp. Med. 2018;215:911–926. doi: 10.1084/jem.20170934. PubMed DOI PMC

McDonald S.A., Lavery D., Wright N.A., Jansen M. Barrett oesophagus: Lessons on its origins from the lesion itself. Nat. Rev. Gastroenterol. Hepatol. 2015;12:50–60. doi: 10.1038/nrgastro.2014.181. PubMed DOI

Spechler S.J., Souza R.F. Barrett’s esophagus. N. Engl. J. Med. 2014;371:836–845. doi: 10.1056/NEJMra1314704. PubMed DOI

Wild C.P., Hardie L.J. Reflux, Barrett’s oesophagus and adenocarcinoma: Burning questions. Nat. Rev. Cancer. 2003;3:676–684. doi: 10.1038/nrc1166. PubMed DOI

El-Serag H.B., Aguirre T.V., Davis S., Kuebeler M., Bhattacharyya A., Sampliner R.E. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett’s esophagus. Am. J. Gastroenterol. 2004;99:1877–1883. doi: 10.1111/j.1572-0241.2004.30228.x. PubMed DOI

Jankowski J.A.Z., de Caestecker J., Love S.B., Reilly G., Watson P., Sanders S., Ang Y., Morris D., Bhandari P., Brooks C., et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): A randomised factorial trial. Lancet. 2018;392:400–408. doi: 10.1016/S0140-6736(18)31388-6. PubMed DOI PMC

Eda A., Osawa H., Satoh K., Yanaka I., Kihira K., Ishino Y., Mutoh H., Sugano K. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J. Gastroenterol. 2003;38:14–22. doi: 10.1007/s005350300001. PubMed DOI

Groisman G.M., Amar M., Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod. Pathol. 2004;17:1282–1288. doi: 10.1038/modpathol.3800182. PubMed DOI

Phillips R.W., Frierson H.F., Jr., Moskaluk C.A. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am. J. Surg. Pathol. 2003;27:1442–1447. doi: 10.1097/00000478-200311000-00006. PubMed DOI

Vallbohmer D., DeMeester S.R., Peters J.H., Oh D.S., Kuramochi H., Shimizu D., Hagen J.A., Danenberg K.D., Danenberg P.V., DeMeester T.R., et al. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis Esophagus. 2006;19:260–266. doi: 10.1111/j.1442-2050.2006.00586.x. PubMed DOI

Moons L.M., Bax D.A., Kuipers E.J., Van Dekken H., Haringsma J., Van Vliet A.H., Siersema P.D., Kusters J.G. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J. Clin. Pathol. 2004;57:1063–1068. doi: 10.1136/jcp.2003.015727. PubMed DOI PMC

Kim S., Domon-Dell C., Wang Q., Chung D.H., Di Cristofano A., Pandolfi P.P., Freund J.N., Evers B.M. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology. 2002;123:1163–1178. doi: 10.1053/gast.2002.36043. PubMed DOI

Huo X., Agoston A.T., Dunbar K.B., Cipher D.J., Zhang X., Yu C., Cheng E., Zhang Q., Pham T.H., Tambar U.K., et al. Hypoxia-inducible factor-2alpha plays a role in mediating oesophagitis in GORD. Gut. 2017;66:1542–1554. doi: 10.1136/gutjnl-2016-312595. PubMed DOI PMC

O’Riordan J.M., Abdel-latif M.M., Ravi N., McNamara D., Byrne P.J., McDonald G.S., Keeling P.W., Kelleher D., Reynolds J.V. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am. J. Gastroenterol. 2005;100:1257–1264. doi: 10.1111/j.1572-0241.2005.41338.x. PubMed DOI

Moskaluk C.A., Zhang H., Powell S.M., Cerilli L.A., Hampton G.M., Frierson H.F., Jr. Cdx2 protein expression in normal and malignant human tissues: An immunohistochemical survey using tissue microarrays. Mod. Pathol. 2003;16:913–919. doi: 10.1097/01.MP.0000086073.92773.55. PubMed DOI

Werling R.W., Yaziji H., Bacchi C.E., Gown A.M. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: An immunohistochemical survey of 476 primary and metastatic carcinomas. Am. J. Surg. Pathol. 2003;27:303–310. doi: 10.1097/00000478-200303000-00003. PubMed DOI

Correa P. Human gastric carcinogenesis: A multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740. PubMed

Correa P., Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659–672. doi: 10.1053/j.gastro.2007.06.026. PubMed DOI

Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001;345:784–789. doi: 10.1056/NEJMoa001999. PubMed DOI

Schmidt P.H., Lee J.R., Joshi V., Playford R.J., Poulsom R., Wright N.A., Goldenring J.R. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab. Investig. 1999;79:639–646. PubMed

Nomura S., Baxter T., Yamaguchi H., Leys C., Vartapetian A.B., Fox J.G., Lee J.R., Wang T.C., Goldenring J.R. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology. 2004;127:582–594. doi: 10.1053/j.gastro.2004.05.029. PubMed DOI

Nomura S., Yamaguchi H., Ogawa M., Wang T.C., Lee J.R., Goldenring J.R. Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G362–G375. doi: 10.1152/ajpgi.00160.2004. PubMed DOI

Almeida R., Silva E., Santos-Silva F., Silberg D.G., Wang J., De Bolos C., David L. Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J. Pathol. 2003;199:36–40. doi: 10.1002/path.1246. PubMed DOI

Bai Y.Q., Yamamoto H., Akiyama Y., Tanaka H., Takizawa T., Koike M., Kenji Yagi O., Saitoh K., Takeshita K., Iwai T., et al. Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett. 2002;176:47–55. doi: 10.1016/S0304-3835(01)00753-4. PubMed DOI

Mizoshita T., Inada K., Tsukamoto T., Kodera Y., Yamamura Y., Hirai T., Kato T., Joh T., Itoh M., Tatematsu M. Expression of Cdx1 and Cdx2 mRNAs and relevance of this expression to differentiation in human gastrointestinal mucosa—with special emphasis on participation in intestinal metaplasia of the human stomach. Gastric Cancer. 2001;4:185–191. doi: 10.1007/PL00011741. PubMed DOI

Eda A., Osawa H., Yanaka I., Satoh K., Mutoh H., Kihira K., Sugano K. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J. Gastroenterol. 2002;37:94–100. doi: 10.1007/s005350200002. PubMed DOI

Mutoh H., Hakamata Y., Sato K., Eda A., Yanaka I., Honda S., Osawa H., Kaneko Y., Sugano K. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem. Biophys. Res. Commun. 2002;294:470–479. doi: 10.1016/S0006-291X(02)00480-1. PubMed DOI

Mutoh H., Sakurai S., Satoh K., Osawa H., Hakamata Y., Takeuchi T., Sugano K. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: Comparative study with Cdx2 transgenic mice. Gut. 2004;53:1416–1423. doi: 10.1136/gut.2003.032482. PubMed DOI PMC

Friis-Hansen L., Rieneck K., Nilsson H.O., Wadstrom T., Rehfeld J.F. Gastric inflammation, metaplasia, and tumor development in gastrin-deficient mice. Gastroenterology. 2006;131:246–258. doi: 10.1053/j.gastro.2006.04.031. PubMed DOI

Zavros Y., Eaton K.A., Kang W., Rathinavelu S., Katukuri V., Kao J.Y., Samuelson L.C., Merchant J.L. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005;24:2354–2366. doi: 10.1038/sj.onc.1208407. PubMed DOI

Sakagami T., Dixon M., O’Rourke J., Howlett R., Alderuccio F., Vella J., Shimoyama T., Lee A. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut. 1996;39:639–648. doi: 10.1136/gut.39.5.639. PubMed DOI PMC

Wang T.C., Goldenring J.R., Dangler C., Ito S., Mueller A., Jeon W.K., Koh T.J., Fox J.G. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology. 1998;114:675–689. doi: 10.1016/S0016-5085(98)70581-5. PubMed DOI

Honda S., Fujioka T., Tokieda M., Satoh R., Nishizono A., Nasu M. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res. 1998;58:4255–4259. PubMed

Watanabe H., Fujii I., Terada Y. Induction of intestinal metaplasia in the rat gastric mucosa by local X-irradiation. Pathol Res. Pract. 1980;170:104–114. doi: 10.1016/S0344-0338(80)80159-2. PubMed DOI

Zheng Q., Chen X.Y., Shi Y., Xiao S.D. Development of gastric adenocarcinoma in Mongolian gerbils after long-term infection with Helicobacter pylori. J. Gastroenterol. Hepatol. 2004;19:1192–1198. doi: 10.1111/j.1440-1746.2004.03469.x. PubMed DOI

Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I. PubMed DOI

Powell S.M., Zilz N., Beazer-Barclay Y., Bryan T.M., Hamilton S.R., Thibodeau S.N., Vogelstein B., Kinzler K.W. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–237. doi: 10.1038/359235a0. PubMed DOI

Bettington M., Walker N., Clouston A., Brown I., Leggett B., Whitehall V. The serrated pathway to colorectal carcinoma: Current concepts and challenges. Histopathology. 2013;62:367–386. doi: 10.1111/his.12055. PubMed DOI

Langner C. Serrated and non-serrated precursor lesions of colorectal cancer. Dig. Dis. 2015;33:28–37. doi: 10.1159/000366032. PubMed DOI

De Sousa E.M.F., Wang X., Jansen M., Fessler E., Trinh A., de Rooij L.P., de Jong J.H., de Boer O.J., van Leersum R., Bijlsma M.F., et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 2013;19:614–618. doi: 10.1038/nm.3174. PubMed DOI

Garcia-Solano J., Conesa-Zamora P., Trujillo-Santos J., Makinen M.J., Perez-Guillermo M. Tumour budding and other prognostic pathological features at invasive margins in serrated colorectal adenocarcinoma: A comparative study with conventional carcinoma. Histopathology. 2011;59:1046–1056. doi: 10.1111/j.1365-2559.2011.04043.x. PubMed DOI

Landau M.S., Kuan S.F., Chiosea S., Pai R.K. BRAF-mutated microsatellite stable colorectal carcinoma: An aggressive adenocarcinoma with reduced CDX2 and increased cytokeratin 7 immunohistochemical expression. Hum. Pathol. 2014;45:1704–1712. doi: 10.1016/j.humpath.2014.04.008. PubMed DOI

Sakamoto N., Feng Y., Stolfi C., Kurosu Y., Green M., Lin J., Green M.E., Sentani K., Yasui W., McMahon M., et al. BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. Elife. 2017;6 doi: 10.7554/eLife.20331. PubMed DOI PMC

Dalerba P., Sahoo D., Paik S., Guo X., Yothers G., Song N., Wilcox-Fogel N., Forgo E., Rajendran P.S., Miranda S.P., et al. CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer. N. Engl. J. Med. 2016;374:211–222. doi: 10.1056/NEJMoa1506597. PubMed DOI PMC

Kim J.H., Kim K.J., Rhee Y.Y., Bae J.M., Cho N.Y., Lee H.S., Kang G.H. Gastric-type expression signature in serrated pathway-associated colorectal tumors. Hum. Pathol. 2015;46:643–656. doi: 10.1016/j.humpath.2015.01.003. PubMed DOI

Tsai J.H., Lin Y.L., Cheng Y.C., Chen C.C., Lin L.I., Tseng L.H., Cheng M.L., Liau J.Y., Jeng Y.M. Aberrant expression of annexin A10 is closely related to gastric phenotype in serrated pathway to colorectal carcinoma. Mod. Pathol. 2015;28:268–278. doi: 10.1038/modpathol.2014.96. PubMed DOI

Walsh M.D., Clendenning M., Williamson E., Pearson S.A., Walters R.J., Nagler B., Packenas D., Win A.K., Hopper J.L., Jenkins M.A., et al. Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Mod. Pathol. 2013;26:1642–1656. doi: 10.1038/modpathol.2013.101. PubMed DOI

Beck F., Chawengsaksophak K., Luckett J., Giblett S., Tucci J., Brown J., Poulsom R., Jeffery R., Wright N.A. A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice. Dev. Biol. 2003;255:399–406. doi: 10.1016/S0012-1606(02)00096-9. PubMed DOI

Stringer E.J., Duluc I., Saandi T., Davidson I., Bialecka M., Sato T., Barker N., Clevers H., Pritchard C.A., Winton D.J., et al. Cdx2 determines the fate of postnatal intestinal endoderm. Development. 2012;139:465–474. doi: 10.1242/dev.070722. PubMed DOI PMC

Tong K., Pellon-Cardenas O., Sirihorachai V.R., Warder B.N., Kothari O.A., Perekatt A.O., Fokas E.E., Fullem R.L., Zhou A., Thackray J.K., et al. Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer. Cell Rep. 2017;21:3833–3845. doi: 10.1016/j.celrep.2017.11.104. PubMed DOI PMC

Groden J., Thliveris A., Samowitz W., Carlson M., Gelbert L., Albertsen H., Joslyn G., Stevens J., Spirio L., Robertson M., et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600. doi: 10.1016/0092-8674(81)90021-0. PubMed DOI

Fodde R., Edelmann W., Yang K., van Leeuwen C., Carlson C., Renault B., Breukel C., Alt E., Lipkin M., Khan P.M., et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl. Acad. Sci. USA. 1994;91:8969–8973. doi: 10.1073/pnas.91.19.8969. PubMed DOI PMC

Aoki K., Tamai Y., Horiike S., Oshima M., Taketo M.M. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/− compound mutant mice. Nat. Genet. 2003;35:323–330. doi: 10.1038/ng1265. PubMed DOI

Calon A., Gross I., Lhermitte B., Martin E., Beck F., Duclos B., Kedinger M., Duluc I., Domon-Dell C., Freund J.N. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut. 2007;56:1688–1695. doi: 10.1136/gut.2007.125542. PubMed DOI PMC

Chase A., Reiter A., Burci L., Cazzaniga G., Biondi A., Pickard J., Roberts I.A., Goldman J.M., Cross N.C. Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12) Blood. 1999;93:1025–1031. doi: 10.1182/blood.V93.3.1025. PubMed DOI

Bohlander S.K. ETV6: A versatile player in leukemogenesis. Semin Cancer Biol. 2005;15:162–174. doi: 10.1016/j.semcancer.2005.01.008. PubMed DOI

Hock H., Meade E., Medeiros S., Schindler J.W., Valk P.J., Fujiwara Y., Orkin S.H. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 2004;18:2336–2341. doi: 10.1101/gad.1239604. PubMed DOI PMC

Rawat V.P., Cusan M., Deshpande A., Hiddemann W., Quintanilla-Martinez L., Humphries R.K., Bohlander S.K., Feuring-Buske M., Buske C. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2004;101:817–822. doi: 10.1073/pnas.0305555101. PubMed DOI PMC

Thoene S., Rawat V.P., Heilmeier B., Hoster E., Metzeler K.H., Herold T., Hiddemann W., Gokbuget N., Hoelzer D., Bohlander S.K., et al. The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia. Leukemia. 2009;23:649–655. doi: 10.1038/leu.2008.355. PubMed DOI

Scholl C., Bansal D., Dohner K., Eiwen K., Huntly B.J., Lee B.H., Rucker F.G., Schlenk R.F., Bullinger L., Dohner H., et al. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J. Clin. Invest. 2007;117:1037–1048. doi: 10.1172/JCI30182. PubMed DOI PMC

Riedt T., Ebinger M., Salih H.R., Tomiuk J., Handgretinger R., Kanz L., Grunebach F., Lengerke C. Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood. 2009;113:4049–4051. doi: 10.1182/blood-2008-12-196634. PubMed DOI

Rawat V.P., Thoene S., Naidu V.M., Arseni N., Heilmeier B., Metzeler K., Petropoulos K., Deshpande A., Quintanilla-Martinez L., Bohlander S.K., et al. Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. Blood. 2008;111:309–319. doi: 10.1182/blood-2007-04-085407. PubMed DOI

Lawrence H.J., Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood. 1992;80:2445–2453. doi: 10.1182/blood.V80.10.2445.2445. PubMed DOI

Lawrence H.J., Sauvageau G., Ahmadi N., Lopez A.R., LeBeau M.M., Link M., Humphries K., Largman C. Stage-and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. Exp. Hematol. 1995;23:1160–1166. PubMed

Thorsteinsdottir U., Kroon E., Jerome L., Blasi F., Sauvageau G. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol. Cell Biol. 2001;21:224–234. doi: 10.1128/MCB.21.1.224-234.2001. PubMed DOI PMC

Thorsteinsdottir U., Sauvageau G., Humphries R.K. Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol. Oncol. Clin. N. Am. 1997;11:1221–1237. doi: 10.1016/S0889-8588(05)70491-3. PubMed DOI

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–537. doi: 10.1126/science.286.5439.531. PubMed DOI

Haferlach C., Mecucci C., Schnittger S., Kohlmann A., Mancini M., Cuneo A., Testoni N., Rege-Cambrin G., Santucci A., Vignetti M., et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood. 2009;114:3024–3032. doi: 10.1182/blood-2009-01-197871. PubMed DOI

Krivtsov A.V., Armstrong S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer. 2007;7:823–833. doi: 10.1038/nrc2253. PubMed DOI

Rice K.L., Licht J.D. HOX deregulation in acute myeloid leukemia. J. Clin. Investig. 2007;117:865–868. doi: 10.1172/JCI31861. PubMed DOI PMC

Pineault N., Helgason C.D., Lawrence H.J., Humphries R.K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 2002;30:49–57. doi: 10.1016/S0301-472X(01)00757-3. PubMed DOI

Sauvageau G., Lansdorp P.M., Eaves C.J., Hogge D.E., Dragowska W.H., Reid D.S., Largman C., Lawrence H.J., Humphries R.K. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA. 1994;91:12223–12227. doi: 10.1073/pnas.91.25.12223. PubMed DOI PMC

Lawrence H.J., Christensen J., Fong S., Hu Y.L., Weissman I., Sauvageau G., Humphries R.K., Largman C. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood. 2005;106:3988–3994. doi: 10.1182/blood-2005-05-2003. PubMed DOI PMC

Lawrence H.J., Helgason C.D., Sauvageau G., Fong S., Izon D.J., Humphries R.K., Largman C. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 1997;89:1922–1930. doi: 10.1182/blood.V89.6.1922. PubMed DOI

Lengerke C., Daley G.Q. Patterning definitive hematopoietic stem cells from embryonic stem cells. Exp. Hematol. 2005;33:971–979. doi: 10.1016/j.exphem.2005.06.004. PubMed DOI

Subramanian V., Meyer B.I., Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995;83:641–653. doi: 10.1016/0092-8674(95)90104-3. PubMed DOI

Davidson A.J., Ernst P., Wang Y., Dekens M.P., Kingsley P.D., Palis J., Korsmeyer S.J., Daley G.Q., Zon L.I. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature. 2003;425:300–306. doi: 10.1038/nature01973. PubMed DOI

Davidson A.J., Zon L.I. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev. Biol. 2006;292:506–518. doi: 10.1016/j.ydbio.2006.01.003. PubMed DOI

Gering M., Rodaway A.R., Gottgens B., Patient R.K., Green A.R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 1998;17:4029–4045. doi: 10.1093/emboj/17.14.4029. PubMed DOI PMC

Charite J., de Graaff W., Consten D., Reijnen M.J., Korving J., Deschamps J. Transducing positional information to the Hox genes: Critical interaction of cdx gene products with position-sensitive regulatory elements. Development. 1998;125:4349–4358. PubMed

Hunter C.P., Harris J.M., Maloof J.N., Kenyon C. Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit wnt signaling. Development. 1999;126:805–814. PubMed

Wang Y., Yabuuchi A., McKinney-Freeman S., Ducharme D.M., Ray M.K., Chawengsaksophak K., Archer T.K., Daley G.Q. Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc. Natl. Acad. Sci. USA. 2008;105:7756–7761. doi: 10.1073/pnas.0708951105. PubMed DOI PMC

Brooke-Bisschop T., Savory J.G.A., Foley T., Ringuette R., Lohnes D. Essential roles for Cdx in murine primitive hematopoiesis. Dev. Biol. 2017;422:115–124. doi: 10.1016/j.ydbio.2017.01.002. PubMed DOI

Lengerke C., Grauer M., Niebuhr N.I., Riedt T., Kanz L., Park I.H., Daley G.Q. Hematopoietic development from human induced pluripotent stem cells. Ann. N. Y. Acad. Sci. 2009;1176:219–227. doi: 10.1111/j.1749-6632.2009.04606.x. PubMed DOI PMC

Lengerke C., McKinney-Freeman S., Naveiras O., Yates F., Wang Y., Bansal D., Daley G.Q. The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann. N. Y. Acad. Sci. 2007;1106:197–208. doi: 10.1196/annals.1392.006. PubMed DOI

Lengerke C., Schmitt S., Bowman T.V., Jang I.H., Maouche-Chretien L., McKinney-Freeman S., Davidson A.J., Hammerschmidt M., Rentzsch F., Green J.B., et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell. 2008;2:72–82. doi: 10.1016/j.stem.2007.10.022. PubMed DOI

Chawengsaksophak K., de Graaff W., Rossant J., Deschamps J., Beck F. Cdx2 is essential for axial elongation in mouse development. Proc. Natl. Acad. Sci. USA. 2004;101:7641–7645. doi: 10.1073/pnas.0401654101. PubMed DOI PMC

Lengerke C., Wingert R., Beeretz M., Grauer M., Schmidt A.G., Konantz M., Daley G.Q., Davidson A.J. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev. Biol. 2011;354:134–142. doi: 10.1016/j.ydbio.2011.03.027. PubMed DOI PMC

Foley T.E., Hess B., Savory J.G.A., Ringuette R., Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development. 2019;146 doi: 10.1242/dev.170498. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Special Issue: Animal Modeling in Cancer

. 2020 Aug 27 ; 11 (9) : . [epub] 20200827

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...