Expression Patterns of Xenobiotic-Metabolizing Enzymes in Tumor and Adjacent Normal Mucosa Tissues among Patients with Colorectal Cancer: The ColoCare Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA189184
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
T32 HG008962
NHGRI NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
P30 CA042014
NCI NIH HHS - United States
PubMed
31740522
PubMed Central
PMC7007332
DOI
10.1158/1055-9965.epi-19-0449
PII: 1055-9965.EPI-19-0449
Knihovny.cz E-zdroje
- MeSH
- aminy metabolismus MeSH
- antioxidancia metabolismus MeSH
- dospělí MeSH
- heterocyklické sloučeniny metabolismus MeSH
- karcinogeneze patologie MeSH
- karcinogeny metabolismus MeSH
- kolorektální nádory patologie MeSH
- kuřáci statistika a číselné údaje MeSH
- lidé středního věku MeSH
- lidé MeSH
- nekuřáci statistika a číselné údaje MeSH
- polycyklické aromatické uhlovodíky metabolismus MeSH
- prospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- stanovení celkové genové exprese statistika a číselné údaje MeSH
- střevní sliznice enzymologie patologie MeSH
- xenobiotika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aminy MeSH
- antioxidancia MeSH
- heterocyklické sloučeniny MeSH
- karcinogeny MeSH
- polycyklické aromatické uhlovodíky MeSH
- xenobiotika MeSH
BACKGROUND: Xenobiotic-metabolizing enzymes (XME) play a critical role in the activation and detoxification of several carcinogens. However, the role of XMEs in colorectal carcinogenesis is unclear. METHODS: We investigated the expression of XMEs in human colorectal tissues among patients with stage I-IV colorectal cancer (n = 71) from the ColoCare Study. Transcriptomic profiling using paired colorectal tumor and adjacent normal mucosa tissues of XMEs (GSTM1, GSTA1, UGT1A8, UGT1A10, CYP3A4, CYP2C9, GSTP1, and CYP2W1) by RNA microarray was compared using Wilcoxon rank-sum tests. We assessed associations between clinicopathologic, dietary, and lifestyle factors and XME expression with linear regression models. RESULTS: GSTM1, GSTA1, UGT1A8, UGT1A10, and CYP3A4 were all statistically significantly downregulated in colorectal tumor relative to normal mucosa tissues (all P ≤ 0.03). Women had significantly higher expression of GSTM1 in normal tissues compared with men (β = 0.37, P = 0.02). By tumor site, CYP2C9 expression was lower in normal mucosa among patients with rectal cancer versus colon cancer cases (β = -0.21, P = 0.0005). Smokers demonstrated higher CYP2C9 expression levels in normal mucosa (β = 0.17, P = 0.02) when compared with nonsmokers. Individuals who used NSAIDs had higher GSTP1 tumor expression compared with non-NSAID users (β = 0.17, P = 0.03). Higher consumption of cooked vegetables (>1×/week) was associated with higher CYP3A4 expression in colorectal tumor tissues (β = 0.14, P = 0.007). CONCLUSIONS: XMEs have lower expression in colorectal tumor relative to normal mucosa tissues and may modify colorectal carcinogenesis via associations with clinicopathologic, lifestyle, and dietary factors. IMPACT: Better understanding into the role of drug-metabolizing enzymes in colorectal cancer may reveal biological differences that contribute to cancer development, as well as treatment response, leading to clinical implications in colorectal cancer prevention and management.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Population Health Sciences University of Utah Salt Lake City Utah
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
European Molecular Biology Laboratory Heidelberg Germany
Faculty of Human and Health Sciences University of Bremen Bremen Germany
Fred Hutchinson Cancer Research Center Seattle Washington
German Cancer Consortium Heidelberg Germany
Huntsman Cancer Institute Salt Lake City Utah
Institute of Medical Biometry and Informatics University of Heidelberg Heidelberg Germany
Institute of Pathology University Hospital Heidelberg Germany
NCT Cancer Registry German Cancer Research Center Heidelberg Germany
Tissue Bank of the National Center for Tumor Diseases Heidelberg Germany
Zobrazit více v PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. PubMed
de la Chapelle A Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4(10):769–80. PubMed
Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207–22. PubMed PMC
Ulrich CM, Himbert C, Holowatyj AN, Hursting SD. Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms. Nat Rev Gastroenterol Hepatol. 2018;15(11):683–98. PubMed PMC
Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, et al. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6. Chem Res Toxicol. 2013;26(4):529–37. PubMed PMC
Zhao Y, Han Y, Zhang L, Wang Y, Ma Y, Zhang F, et al. Quantitative assessment of the effect of cytochrome P450 2C9 gene polymorphism and colorectal cancer. PLoS One. 2013;8(4):e60607. PubMed PMC
Wang H, Ren L, He Y, Wei Y, Chen Z, Yang W, et al. Association between cytochrome P450 2C9 gene polymorphisms and colorectal cancer susceptibility: evidence from 16 case-control studies. Tumour Biol. 2014;35(5):4317–22. PubMed
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & therapeutics. 2013;138(1):103–41. PubMed
Ma X, Zhang B, Zheng W. Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut. 2014;63(2):326–36. PubMed PMC
Li J, Xu W, Liu F, Huang S, He M. GSTM1 polymorphism contribute to colorectal cancer in Asian populations: a prospective meta-analysis. Sci Rep. 2015;5:12514. PubMed PMC
Huang M, Zeng Y, Zhao F, Huang Y. Association of glutathione S-transferase M1 polymorphisms in the colorectal cancer risk: A meta-analysis. J Cancer Res Ther. 2018;14(1):176–83. PubMed
Scherer D, Koepl LM, Poole EM, Balavarca Y, Xiao L, Baron JA, et al. Genetic variation in UGT genes modify the associations of NSAIDs with risk of colorectal cancer: colon cancer family registry. Genes Chromosomes Cancer. 2014;53(7):568–78. PubMed PMC
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev. 2016;48(1):47–69. PubMed
Tourancheau A, Rouleau M, Guauque-Olarte S, Villeneuve L, Gilbert I, Droit A, et al. Quantitative profiling of the UGT transcriptome in human drug-metabolizing tissues. The pharmacogenomics journal. 2018;18(2):251–61. PubMed
Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol. 2008;21(1):70–83. PubMed
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7(1):8. PubMed PMC
Bellemare J, Rouleau M, Harvey M, Popa I, Pelletier G, Tetu B, et al. Immunohistochemical expression of conjugating UGT1A-derived isoforms in normal and tumoral drug-metabolizing tissues in humans. J Pathol. 2011;223(3):425–35. PubMed
Tang Y, LeMaster DM, Nauwelaers G, Gu D, Langouet S, Turesky RJ. UDP-glucuronosyltransferase-mediated metabolic activation of the tobacco carcinogen 2-amino-9H-pyrido[2,3-b]indole. J Biol Chem. 2012;287(18):14960–72. PubMed PMC
Thier R, Muller M, Taylor JB, Pemble SE, Ketterer B, Guengerich FP. Enhancement of bacterial mutagenicity of bifunctional alkylating agents by expression of mammalian glutathione S-transferase. Chem Res Toxicol. 1995;8(3):465–72. PubMed
Sidler D, Brockmann A, Mueller J, Nachbur U, Corazza N, Renzulli P, et al. Thiazolide-induced apoptosis in colorectal cancer cells is mediated via the Jun kinase-Bim axis and reveals glutathione-S-transferase P1 as Achilles’ heel. Oncogene. 2012;31(37):4095–106. PubMed
Hengstler JG, Bottger T, Tanner B, Dietrich B, Henrich M, Knapstein PG, et al. Resistance factors in colon cancer tissue and the adjacent normal colon tissue: glutathione S-transferases alpha and pi, glutathione and aldehyde dehydrogenase. Cancer letters. 1998;128(1):105–12. PubMed
Howie AF, Forrester LM, Glancey MJ, Schlager JJ, Powis G, Beckett GJ, et al. Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis. 1990;11(3):451–8. PubMed
Peters WH, Nagengast FM, Wobbes T. Glutathione S-transferases in normal and cancerous human colon tissue. Carcinogenesis. 1989;10(12):2371–4. PubMed
McKay JA, Murray GI, Weaver RJ, Ewen SW, Melvin WT, Burke MD. Xenobiotic metabolising enzyme expression in colonic neoplasia. Gut. 1993;34(9):1234–9. PubMed PMC
Barry EL, Poole EM, Baron JA, Makar KW, Mott LA, Sandler RS, et al. CYP2C9 variants increase risk of colorectal adenoma recurrence and modify associations with smoking but not aspirin treatment. Cancer Causes Control. 2013;24(1):47–54. PubMed PMC
van Breda SG, van Agen E, Engels LG, Moonen EJ, Kleinjans JC, van Delft JH. Altered vegetable intake affects pivotal carcinogenesis pathways in colon mucosa from adenoma patients and controls. Carcinogenesis. 2004;25(11):2207–16. PubMed
Dellinger RW, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10. Carcinogenesis. 2007;28(11):2412–8. PubMed
Pool-Zobel BL, Bub A, Liegibel UM, Treptow-van Lishaut S, Rechkemmer G. Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiol Biomarkers Prev. 1998;7(10):891–9. PubMed
Zhang L, Huang M, Blair IA, Penning TM. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells. Chem Res Toxicol. 2013;26(10):1570–8. PubMed PMC
Ulrich CM, Gigic B, Bohm J, Ose J, Viskochil R, Schneider M, et al. The ColoCare Study: A Paradigm of Transdisciplinary Science in Colorectal Cancer Outcomes. Cancer Epidemiol Biomarkers Prev. 2019;28(3):591–601. PubMed PMC
Geijsen A, Brezina S, Keski-Rahkonen P, Baierl A, Bachleitner-Hofmann T, Bergmann MM, et al. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int J Cancer. 2019. PubMed PMC
Himbert C, Ose J, Nattenmuller J, Warby CA, Holowatyj AN, Bohm J, et al. Body Fatness, Adipose Tissue Compartments, and Biomarkers of Inflammation and Angiogenesis in Colorectal Cancer: The ColoCare Study. Cancer Epidemiol Biomarkers Prev. 2019;28(1):76–82. PubMed PMC
Gigic B, Boeing H, Toth R, Bohm J, Habermann N, Scherer D, et al. Associations Between Dietary Patterns and Longitudinal Quality of Life Changes in Colorectal Cancer Patients: The ColoCare Study. Nutr Cancer. 2018;70(1):51–60. PubMed PMC
Bohm J, Pianka F, Stuttgen N, Rho J, Gigic B, Zhang Y, et al. Discovery of novel plasma proteins as biomarkers for the development of incisional hernias after midline incision in patients with colorectal cancer: The ColoCare study. Surgery. 2017;161(3):808–17. PubMed PMC
Brenner H, Chang-Claude J, Seiler CM, Rickert A, Hoffmeister M. Protection from colorectal cancer after colonoscopy: a population-based, case-control study. Ann Intern Med. 2011;154(1):22–30. PubMed
Brenner H, Chang-Claude J, Jansen L, Knebel P, Stock C, Hoffmeister M. Reduced risk of colorectal cancer up to 10 years after screening, surveillance, or diagnostic colonoscopy. Gastroenterology. 2014;146(3):709–17. PubMed
Beyerle J, Frei E, Stiborova M, Habermann N, Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev. 2015;47(2):199–221. PubMed
Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8. PubMed
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. PubMed
Benjamini Y, et al. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
Fernandez NF, Gundersen GW, Rahman A, Grimes ML, Rikova K, Hornbeck P, et al. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Sci Data. 2017;4:170151. PubMed PMC
Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature reviews Microbiology. 2016;14(5):273–87. PubMed PMC
Sadler NC, Webb-Robertson BM, Clauss TR, Pounds JG, Corley R, Wright AT. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities. Chem Res Toxicol. 2018;31(5):308–18. PubMed PMC
Tralau T, Sowada J, Luch A. Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology? Expert Opinion on Drug Metabolism & Toxicology. 2015;11(3):411–25. PubMed
Navarro SL, Chang JL, Peterson S, Chen C, King IB, Schwarz Y, et al. Modulation of human serum glutathione S-transferase A1/2 concentration by cruciferous vegetables in a controlled feeding study is influenced by GSTM1 and GSTT1 genotypes. Cancer Epidemiol Biomarkers Prev. 2009;18(11):2974–8. PubMed PMC
Tijhuis MJ, Wark PA, Aarts JM, Visker MH, Nagengast FM, Kok FJ, et al. GSTP1 and GSTA1 polymorphisms interact with cruciferous vegetable intake in colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2005;14(12):2943–51. PubMed
Eichholzer M, Rohrmann S, Barbir A, Hermann S, Teucher B, Kaaks R, et al. Polymorphisms in heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk. Int J Mol Epidemiol Genet. 2012;3(2):96–106. PubMed PMC
Guo J, Johansson I, Mkrtchian S, Ingelman-Sundberg M. The CYP2W1 enzyme: regulation, properties and activation of prodrugs. Drug Metab Rev. 2016;48(3):369–78. PubMed
Edler D, Stenstedt K, Ohrling K, Hallstrom M, Karlgren M, Ingelman-Sundberg M, et al. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer - a pilot study. Eur J Cancer. 2009;45(4):705–12. PubMed
Gomez A, Karlgren M, Edler D, Bernal ML, Mkrtchian S, Ingelman-Sundberg M. Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics. 2007;8(10):1315–25. PubMed
Karlgren M, Gomez A, Stark K, Svard J, Rodriguez-Antona C, Oliw E, et al. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem Biophys Res Commun. 2006;341(2):451–8. PubMed
Stenstedt K, Hallstrom M, Johansson I, Ingelman-Sundberg M, Ragnhammar P, Edler D. The expression of CYP2W1: a prognostic marker in colon cancer. Anticancer research. 2012;32(9):3869–74. PubMed
Bedford MR, Anathhanam S, Saleh D, Hickson A, McGregor AK, Boyle K, et al. Response of glutathione S-transferase Pi (GSTP1) to neoadjuvant therapy in rectal adenocarcinoma. Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland. 2012;14(12):1483–8. PubMed
Miyanishi K, Takayama T, Ohi M, Hayashi T, Nobuoka A, Nakajima T, et al. Glutathione S-transferase-pi overexpression is closely associated with K-ras mutation during human colon carcinogenesis. Gastroenterology. 2001;121(4):865–74. PubMed
Muguruma N, Okamoto K, Nakagawa T, Sannomiya K, Fujimoto S, Mitsui Y, et al. Molecular imaging of aberrant crypt foci in the human colon targeting glutathione S-transferase P1-1. Sci Rep. 2017;7(1):6536. PubMed PMC
Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[a,h]anthracene by cDNA-expressed human cytochromes P450. Archives of biochemistry and biophysics. 1996;328(1):201–7. PubMed
Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res. 1989;49(22):6304–12. PubMed
Degawa M, Stern SJ, Martin MV, Guengerich FP, Fu PP, Ilett KF, et al. Metabolic activation and carcinogen-DNA adduct detection in human larynx. Cancer Res. 1994;54(18):4915–9. PubMed
Thum T, Erpenbeck VJ, Moeller J, Hohlfeld JM, Krug N, Borlak J. Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environmental health perspectives. 2006;114(11):1655–61. PubMed PMC
Bourgine J, Billaut-Laden I, Happillon M, Lo-Guidice JM, Maunoury V, Imbenotte M, et al. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: comparison between human intestinal biopsy samples and colon cell lines. Drug Metab Dispos. 2012;40(4):694–705. PubMed
Bergheim I, Bode C, Parlesak A. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa. BMC Clin Pharmacol. 2005;5:4. PubMed PMC
McFadyen MC, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Molecular cancer therapeutics. 2004;3(3):363–71. PubMed
Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol. 2003;21(13):2481–5. PubMed
Fujitaka K, Oguri T, Isobe T, Fujiwara Y, Kohno N. Induction of cytochrome P450 3A4 by docetaxel in peripheral mononuclear cells and its expression in lung cancer. Cancer chemotherapy and pharmacology. 2001;48(1):42–6. PubMed
Liu M, Wang Q, Liu F, Cheng X, Wu X, Wang H, et al. UDP-glucuronosyltransferase 1A compromises intracellular accumulation and anti-cancer effect of tanshinone IIA in human colon cancer cells. PLoS One. 2013;8(11):e79172. PubMed PMC