High Specific Efficiency of Venom of Two Prey-Specialized Spiders
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31771158
PubMed Central
PMC6950493
DOI
10.3390/toxins11120687
PII: toxins11120687
Knihovny.cz E-zdroje
- Klíčová slova
- Araneae, LD50, ecological niche, predator-prey interactions, specialization, toxicity, venom ecological function,
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- Formicidae MeSH
- Gryllidae MeSH
- LD50 MeSH
- molekulová hmotnost MeSH
- paralýza chemicky indukované MeSH
- pavoučí jedy chemie toxicita MeSH
- pavouci chemie MeSH
- predátorské chování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pavoučí jedy MeSH
The venom of predators should be under strong selection pressure because it is a costly substance and prey may potentially become resistant. Particularly in prey-specialized predators, venom should be selected for its high efficiency against the focal prey. Very effective venom paralysis has been observed in specialized predators, such as spiders preying on dangerous prey. Here, we compared the toxicity of the venoms of two prey-specialized species, araneophagous Palpimanus sp. and myrmecophagous Zodarion nitidum, and their related generalist species. We injected different venom concentrations into two prey types-the prey preferred by a specialist and an alternative prey-and observed the mortality and the paralysis of the prey within 24 h. We found that the venoms of specialists were far more potent towards the preferred prey than alternative prey. The venoms of generalists were similarly potent towards both prey types. In addition, we tested the efficacy of two venom fractions (smaller and larger than 10 kDa) in araneophagous Palpimanus sp. Compounds larger than 10 kDa paralyzed both prey types, but smaller compounds (<10 kDa) were effective only on preferred prey, suggesting the presence of prey-specific compounds in the latter fraction. Our results confirm that prey-specialized spiders possess highly specific venom that allows them to subdue dangerous prey.
Zobrazit více v PubMed
Fry B.G., Roelants K., Champagne D.E., Scheib H., Tyndall J.D., King G.F., Nevalainen T.J., Norman J.A., Lewis R.J., Norton R.S., et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009;10:483–511. doi: 10.1146/annurev.genom.9.081307.164356. PubMed DOI
Morgenstern D., King G.F. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–128. doi: 10.1016/j.toxicon.2012.11.022. PubMed DOI
Walker A.A., Robinson S.D., Yeates D.K., Jin J., Baumann K., Dobson J., Fry B.G., King G.F. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon. 2018;154:5–27. doi: 10.1016/j.toxicon.2018.09.004. PubMed DOI
Casewell N.R., Wüster W., Vonk F.J., Harrison R.A., Fry B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013;28:219–229. doi: 10.1016/j.tree.2012.10.020. PubMed DOI
Von Reumont B., Campbell L., Jenner R. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins. 2014;6:3488–3551. doi: 10.3390/toxins6123488. PubMed DOI PMC
Wilson D., Daly N. Venomics: A mini-review. High Throughput. 2018;7:19. doi: 10.3390/ht7030019. PubMed DOI PMC
Chippaux J.P., Williams V., White J. Snake venom variability: Methods of study, results and interpretation. Toxicon. 1991;29:1279–1303. doi: 10.1016/0041-0101(91)90116-9. PubMed DOI
Minton S.A. A note on the venom of an aged rattlesnake. Toxicon. 1975;13:73–74. doi: 10.1016/0041-0101(75)90162-2. PubMed DOI
Fiero M.K., Seifert M.W., Weaver T.J., Bonilla C.A. Comparative study of juvenile and adult prairie rattlesnake (Crotalus viridis viridis) venoms. Toxicon. 1972;10:81–82. doi: 10.1016/0041-0101(72)90095-5. PubMed DOI
Gubenšek F., Sket D., Turk V., Lebez D. Fractionation of Vipera ammodytes venom and seasonal variation of its composition. Toxicon. 1974;12:167–168. doi: 10.1016/0041-0101(74)90241-4. PubMed DOI
Jiménez-Porras J.M. Intraspecific variations in composition of venom of the jumping viper, Bothrops nummifera. Toxicon. 1964;2:187–195. doi: 10.1016/0041-0101(64)90021-2. PubMed DOI
Glenn J.L., Straight R. Mojave rattlesnake Crotalus scutulatus scutulatus venom: Variation in toxicity with geographical origin. Toxicon. 1978;16:81–84. doi: 10.1016/0041-0101(78)90065-X. PubMed DOI
Menezes M.C., Furtado M.F., Travaglia-Cardoso S.R., Camargo A.C., Serrano S.M. Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon. 2006;47:304–312. doi: 10.1016/j.toxicon.2005.11.007. PubMed DOI
Daltry J.C., Wüster W., Thorpe R.S. Diet and snake venom evolution. Nature. 1996;379:537–540. doi: 10.1038/379537a0. PubMed DOI
Barlow A., Pook C.E., Harrison R.A., Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B. 2009;276:2443–2449. doi: 10.1098/rspb.2009.0048. PubMed DOI PMC
Healy K., Carbone C., Jackson A.L. Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure. Ecol. Lett. 2019;22:527–537. doi: 10.1111/ele.13216. PubMed DOI
McCue M.D. Cost of producing venom in three North American pitviper species. Copeia. 2006;2006:818–825. doi: 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2. DOI
Nisani Z., Dunbar S.G., Hayes W.K. Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae) Comp. Biochem. Physiol. A. 2007;147:509–513. doi: 10.1016/j.cbpa.2007.01.027. PubMed DOI
Pintor A.F., Krockenberger A.K., Seymour J.E. Costs of venom production in the common death adder (Acanthophis antarcticus) Toxicon. 2010;56:1035–1042. doi: 10.1016/j.toxicon.2010.07.008. PubMed DOI
Smith M.T., Ortega J., Beaupre S.J. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis) Toxicon. 2014;86:1–7. doi: 10.1016/j.toxicon.2014.04.013. PubMed DOI
Arbuckle K., de la Vega R.C.R., Casewell N.R. Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon. 2017;140:118–131. doi: 10.1016/j.toxicon.2017.10.026. PubMed DOI
Church J.E., Hodgson W.C. The pharmacological activity of fish venoms. Toxicon. 2002;40:1083–1093. doi: 10.1016/S0041-0101(02)00126-5. PubMed DOI
Peiren N., Vanrobaeys F., de Graaf D.C., Devreese B., Van Beeumen J., Jacobs F.J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim. Biophys. Acta. 2005;1752:1–5. doi: 10.1016/j.bbapap.2005.07.017. PubMed DOI
De Graaf D.C., Aerts M., Danneels E., Devreese B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J. Proteom. 2009;72:145–154. doi: 10.1016/j.jprot.2009.01.017. PubMed DOI
Da Silva N.J., Aird S.D. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001;128:425–456. doi: 10.1016/S1532-0456(00)00215-5. PubMed DOI
Gibbs H.L., Mackessy S.P. Functional basis of a molecular adaptation: Prey-specific toxic effects of venom from Sistrurus rattlesnakes. Toxicon. 2009;53:672–679. doi: 10.1016/j.toxicon.2009.01.034. PubMed DOI
Pawlak J., Mackessy S.P., Fry B.G., Bhatia M., Mourier G., Fruchart-Gaillard C., Servent D., Ménez R., Stura E., Ménez A., et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006;281:29030–29041. doi: 10.1074/jbc.M605850200. PubMed DOI
Fainzilber M., Gordon D., Hasson A., Spira M.E., Zlotkin E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 1991;202:589–595. doi: 10.1111/j.1432-1033.1991.tb16412.x. PubMed DOI
Krasnoperov V.G., Shamotienko O.G., Grishin E.V. A crustacean-specific neurotoxin from the venom of the black widow spider Latrodectus mactans tredecimguttatus. Bioorg. Khim. 1990;16:1567–1569. PubMed
Phuong M.A., Mahardika G.N., Alfaro M.E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 2016;17:401. doi: 10.1186/s12864-016-2755-6. PubMed DOI PMC
Pekár S., Bočánek O., Michálek O., Petráková L., Haddad C.R., Šedo O., Zdráhal Z. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 2018;27:4257–4269. doi: 10.1111/mec.14859. PubMed DOI
Pekár S., Líznarová E., Bočánek O., Zdráhal Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87:1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI
World Spider Catalog. Version 20.5. Natural History Museum Bern. [(accessed on 26 September 2019)]; doi: 10.24436/2. Available online: http://wsc.nmbe.ch. DOI
King G.F., Hardy M.C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013;58:475–496. doi: 10.1146/annurev-ento-120811-153650. PubMed DOI
Michálek O., Řezáč M., Líznarová E., Symondson W.O., Pekár S. Silk versus venom: Alternative capture strategies employed by closely related myrmecophagous spiders. Biol. J. Linn. Soc. 2019;126:545–554. doi: 10.1093/biolinnean/bly181. DOI
Malli H., Kuhn-Nentwig L., Imboden H., Nentwig W. Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J. Exp. Biol. 1999;202:2083–2089. PubMed
Kuhn-Nentwig L., Schaller J., Nentwig W. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae) Toxicon. 2004;43:543–553. doi: 10.1016/j.toxicon.2004.02.009. PubMed DOI
Petráková L., Líznarová E., Pekár S., Haddad C.R., Sentenská L., Symondson W.O.C. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae) Sci. Rep. 2015;5:14013. doi: 10.1038/srep14013. PubMed DOI PMC
Pekár S., Coddington J.A., Blackledge T.A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution. 2012;66:776–806. doi: 10.1111/j.1558-5646.2011.01471.x. PubMed DOI
Pekár S., Šobotník J., Lubin Y. Armoured spiderman: Morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae) Naturwissenschaften. 2011;98:593–603. doi: 10.1007/s00114-011-0804-1. PubMed DOI
Pekár S., Král J., Lubin Y. Natural history and karyotype of some ant-eating zodariid spiders (Araneae, Zodariidae) from Israel. J. Arachnol. 2005;33:50–63. doi: 10.1636/S03-2. DOI
Pekár S., Toft S., Hrušková M., Mayntz D. Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae. Naturwissenschaften. 2008;95:233–239. doi: 10.1007/s00114-007-0322-3. PubMed DOI
Poran N.S., Coss R.G., Benjami E.L.I. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): A study of adaptive variation. Toxicon. 1987;25:767–777. doi: 10.1016/0041-0101(87)90127-9. PubMed DOI
Smiley-Walters S.A., Farrell T.M., Gibbs H.L. The importance of species: Pygmy rattlesnake venom toxicity differs between native prey and related non-native species. Toxicon. 2018;144:42–47. doi: 10.1016/j.toxicon.2018.01.022. PubMed DOI
Pekár S., Šedo O., Líznarová E., Korenko S., Zdráhal Z. David and Goliath: Potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften. 2014;101:533–540. doi: 10.1007/s00114-014-1189-8. PubMed DOI
Kuhn-Nentwig L., Bücheler A., Studer A., Nentwig W. Taurine and histamine: Low molecular compounds in prey hemolymph increase the killing power of spider venom. Naturwissenschaften. 1998;85:136–138. doi: 10.1007/s001140050471. PubMed DOI
Pekár S., Toft S. Can ant-eating Zodarion spiders (Araneae: Zodariidae) develop on a diet optimal for euryphagous arthropod predators? Physiol. Entomol. 2009;34:195–201. doi: 10.1111/j.1365-3032.2009.00672.x. DOI
Adams M.E. Agatoxins: Ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon. 2004;43:509–525. doi: 10.1016/j.toxicon.2004.02.004. PubMed DOI
Pekár S. Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae) J. Arachnol. 2004;32:31–42. doi: 10.1636/S02-15. DOI
Kuhn-Nentwig L., Stöcklin R., Nentwig W. Spider Physiology and Behaviour. Volume 1. Elsevier; London, UK: 2011. Venom composition and strategies in spiders: Is everything possible; pp. 2–86.
Kuzmenkov A.I., Sachkova M.Y., Kovalchuk S.I., Grishin E.V., Vassilevski A.A. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 2016;473:2495–2506. doi: 10.1042/BCJ20160436. PubMed DOI
Herzig V., King G.F., Undheim E.A. Can we resolve the taxonomic bias in spider venom research? Toxicon X. 2019;1:100005. doi: 10.1016/j.toxcx.2018.100005. PubMed DOI PMC
Skejic J., Steer D.L., Dunstan N., Hodgson W.C. Venoms of related mammal-eating species of taipans (Oxyuranus) and brown snakes (Pseudonaja) differ in composition of toxins involved in mammal poisoning. bioRxiv. 2018:378141. doi: 10.1101/378141. DOI
Jenner R.A., von Reumont B.M., Campbell L.I., Undheim E.A. Parallel evolution of complex centipede venoms revealed by comparative proteotranscriptomic analyses. Mol. Biol. Evol. 2019:msz181. doi: 10.1093/molbev/msz181. PubMed DOI PMC
Chandler D., Bailey A.S., Tatchell G.M., Davidson G., Greaves J., Grant W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 2011;366:1987–1998. doi: 10.1098/rstb.2010.0390. PubMed DOI PMC
Schultz T.R. In search of ant ancestors. Proc. Natl. Acad. Sci. USA. 2000;97:14028–14029. doi: 10.1073/pnas.011513798. PubMed DOI PMC
Vander Meer R.K., Jaffe K., Cedeno A. Applied Myrmecology: A World Perspective. Westview Press; Boulder, CO, USA: 1990. pp. 3–70.
Ward D., Lubin Y. Habitat selection and the life history of a desert spider, Stegodyphus lineatus (Eresidae) J. Anim. Ecol. 1993;62:353–363. doi: 10.2307/5366. DOI
Pompozzi G., García L.F., Petráková L., Pekár S. Distinct feeding strategies of generalist and specialist spiders. Ecol. Entomol. 2019;44:129–139. doi: 10.1111/een.12683. DOI
Kuhn-Nentwig L., Schaller J., Nentwig W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae) Toxicon. 1994;32:287–302. doi: 10.1016/0041-0101(94)90082-5. PubMed DOI
Friedel T., Nentwig W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon. 1989;27:305–316. doi: 10.1016/0041-0101(89)90178-5. PubMed DOI
Eggs B., Wolff J.O., Kuhn-Nentwig L., Gorb S.N., Nentwig W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology. 2015;121:1166–1177. doi: 10.1111/eth.12432. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 15 March 2018)]. Available online: https://www.R-project.org/
Venables W.N., Ripley B.D. Modern Applied Statistics with S. 4th ed. Springer; New York, NY, USA: 2002.
Smiley-Walters S.A., Farrell T.M., Gibbs H.L. Evaluating local adaptation of a complex phenotype: Reciprocal tests of pigmy rattlesnake venoms on treefrog prey. Oecologia. 2017;184:739–748. doi: 10.1007/s00442-017-3882-8. PubMed DOI
Halekoh U., Højsgaard S., Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15:1–11. doi: 10.18637/jss.v015.i02. DOI
Pekár S., Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI
Datasets of traits of zodariid spiders (Araneae: Zodariidae)
Dynamic evolution of size and colour in the highly specialized Zodarion ant-eating spiders