Cell Cycle-Dependent Flagellar Disassembly in a Firebug Trypanosomatid Leptomonas pyrrhocoris
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31772053
PubMed Central
PMC6879719
DOI
10.1128/mbio.02424-19
PII: mBio.02424-19
Knihovny.cz E-zdroje
- Klíčová slova
- Leptomonas pyrrhocoris, flagellar length regulation, flagellum disassembly, trypanosomatids,
- MeSH
- buněčný cyklus * MeSH
- flagella genetika metabolismus MeSH
- hmyz parazitologie MeSH
- protozoální proteiny genetika metabolismus MeSH
- teoretické modely MeSH
- Trypanosomatina genetika růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
Current understanding of flagellum/cilium length regulation focuses on a few model organisms with flagella of uniform length. Leptomonas pyrrhocoris is a monoxenous trypanosomatid parasite of firebugs. When cultivated in vitro, L. pyrrhocoris duplicates every 4.2 ± 0.2 h, representing the shortest doubling time reported for trypanosomatids so far. Each L. pyrrhocoris cell starts its cell cycle with a single flagellum. A new flagellum is assembled de novo, while the old flagellum persists throughout the cell cycle. The flagella in an asynchronous L. pyrrhocoris population exhibited a vast length variation of ∼3 to 24 μm, casting doubt on the presence of a length regulation mechanism based on a single balance point between the assembly and disassembly rate in these cells. Through imaging of live L. pyrrhocoris cells, a rapid, partial disassembly of the existing, old flagellum is observed upon, if not prior to, the initial assembly of a new flagellum. Mathematical modeling demonstrated an inverse correlation between the flagellar growth rate and flagellar length and inferred the presence of distinct, cell cycle-dependent disassembly mechanisms with different rates. On the basis of these observations, we proposed a min-max model that could account for the vast flagellar length range observed for asynchronous L. pyrrhocoris. This model may also apply to other flagellated organisms with flagellar length variation.IMPORTANCE Current understanding of flagellum biogenesis during the cell cycle in trypanosomatids is limited to a few pathogenic species, including Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The most notable characteristics of trypanosomatid flagella studied so far are the extreme stability and lack of ciliary disassembly/absorption during the cell cycle. This is different from cilia in Chlamydomonas and mammalian cells, which undergo complete absorption prior to cell cycle initiation. In this study, we examined flagellum duplication during the cell cycle of Leptomonas pyrrhocoris With the shortest duplication time documented for all Trypanosomatidae and its amenability to culture on agarose gel with limited mobility, we were able to image these cells through the cell cycle. Rapid, cell cycle-specific flagellum disassembly different from turnover was observed for the first time in trypanosomatids. Given the observed length-dependent growth rate and the presence of different disassembly mechanisms, we proposed a min-max model that can account for the flagellar length variation observed in L. pyrrhocoris.
Department of Biotechnology Indian Institutes of Technology Kharagpur West Bengal India
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, Ishemgulova A, Jackson AP, Kelly S, Kostygov AY, Logacheva MD, Maslov DA, Opperdoes FR, O’Reilly A, Sádlová J, Ševčíková T, Venkatesh D, Vlček Č, Volf P, Votýpka J, Záhonová K, Yurchenko V, Lukeš J. 2016. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6:23704. doi:10.1038/srep23704. PubMed DOI PMC
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146:1–27. doi:10.1017/S0031182018000951. PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34:466–480. doi:10.1016/j.pt.2018.03.002. PubMed DOI
Maharana BR, Tewari AK, Singh V. 2015. An overview on kinetoplastid paraflagellar rod. J Parasit Dis 39:589–595. doi:10.1007/s12639-014-0422-x. PubMed DOI PMC
Portman N, Gull K. 2010. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40:135–148. doi:10.1016/j.ijpara.2009.10.005. PubMed DOI PMC
Koyfman AY, Schmid MF, Gheiratmand L, Fu CJ, Khant HA, Huang D, He CY, Chiu W. 2011. Structure of Trypanosoma brucei flagellum accounts for its bihelical motion. Proc Natl Acad Sci U S A 108:11105–11108. doi:10.1073/pnas.1103634108. PubMed DOI PMC
Hughes LC, Ralston KS, Hill KL, Zhou ZH. 2012. Three-dimensional structure of the trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One 7:e25700. doi:10.1371/journal.pone.0025700. PubMed DOI PMC
Wheeler RJ, Gluenz E, Gull K. 2011. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 79:647–662. doi:10.1111/j.1365-2958.2010.07479.x. PubMed DOI PMC
Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC. 2011. Morphological events during the cell cycle of Leishmania major. Eukaryot Cell 10:1429–1438. doi:10.1128/EC.05118-11. PubMed DOI PMC
Sherwin T, Gull K. 1989. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell 57:211–221. doi:10.1016/0092-8674(89)90959-8. PubMed DOI
Farr H, Gull K. 2009. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. Cell Motil Cytoskeleton 66:24–35. doi:10.1002/cm.20322. PubMed DOI
Plotnikova OV, Pugacheva EN, Golemis EA. 2009. Primary cilia and the cell cycle. Methods Cell Biol 94:137–160. doi:10.1016/S0091-679X(08)94007-3. PubMed DOI PMC
Rieder CL, Jensen CG, Jensen L. 1979. Resorption of primary cilia during mitosis in a vertebrate (Ptk1) cell line. J Ultrastruct Res 68:173–185. doi:10.1016/s0022-5320(79)90152-7. PubMed DOI
Peacock L, Kay C, Bailey M, Gibson W. 2018. Shape-shifting trypanosomes: flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tse-tse proventriculus. PLoS Pathog 14:e1007043. doi:10.1371/journal.ppat.1007043. PubMed DOI PMC
Wiese M, Kuhn D, Grünfelder CG. 2003. Protein kinase involved in flagellar-length control. Eukaryot Cell 2:769–777. doi:10.1128/ec.2.4.769-777.2003. PubMed DOI PMC
Bertiaux E, Morga B, Blisnick T, Rotureau B, Bastin P. 2018. A grow-and-lock model for the control of flagellum length in trypanosomes. Curr Biol 28:3802–3814. doi:10.1016/j.cub.2018.10.031. PubMed DOI
Marshall WF, Qin HM, Brenni MR, Rosenbaum JL. 2005. Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16:270–278. doi:10.1091/mbc.e04-07-0586. PubMed DOI PMC
Wilson NF, Iyer JK, Buchheim JA, Meek W. 2008. Regulation of flagellar length in Chlamydomonas. Semin Cell Dev Biol 19:494–501. doi:10.1016/j.semcdb.2008.07.005. PubMed DOI PMC
Goehring NW, Hyman AA. 2012. Organelle growth control through limiting pools of cytoplasmic components. Curr Biol 22:R330–R339. doi:10.1016/j.cub.2012.03.046. PubMed DOI
Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF. 2015. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208:223–237. doi:10.1083/jcb.201409036. PubMed DOI PMC
Sanchez I, Dynlacht BD. 2016. Cilium assembly and disassembly. Nat Cell Biol 18:711–717. doi:10.1038/ncb3370. PubMed DOI PMC
McInally SG, Kondev J, Dawson SC. 2019. Length-dependent disassembly maintains four different flagellar lengths in Giardia. BioRxiv doi:10.1101/647115. PubMed DOI PMC
Wang Q, Peng Z, Long H, Deng X, Huang K. 2019. Polyubiquitylation of alpha-tubulin at K304 is required for flagellar disassembly in Chlamydomonas. J Cell Sci 132:jcs229047. doi:10.1242/jcs.229047. PubMed DOI
Ishikawa H, Marshall WF. 2011. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234. doi:10.1038/nrm3085. PubMed DOI