The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form

. 2018 ; 13 (4) : e0195299. [epub] 20180409

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29630677

Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.

Zobrazit více v PubMed

Kohli RM, Massey V. The oxidative half-reaction of Old Yellow Enzyme. The role of tyrosine 196. J Biol Chem. 1998;273(49):32763–70. PubMed

Xu D, Kohli RM, Massey V. The role of threonine 37 in flavin reactivity of the old yellow enzyme. Proc Natl Acad Sci U S A. 1999;96(7):3556–61. PubMed PMC

Brown BJ, Hyun JW, Duvvuri S, Karplus PA, Massey V. The role of glutamine 114 in old yellow enzyme. J Biol Chem. 2002;277(3):2138–45. doi: 10.1074/jbc.M108453200 PubMed DOI

Messiha HL, Bruce NC, Sattelle BM, Sutcliffe MJ, Munro AW, Scrutton NS. Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase. J Biol Chem. 2005;280(29):27103–10. doi: 10.1074/jbc.M502293200 PubMed DOI

Okamoto N, Yamaguchi K, Mizohata E, Tokuoka K, Uchiyama N, Sugiyama S, et al. Structural insight into the stereoselective production of PGF2α by Old Yellow Enzyme from Trypanosoma cruzi. J Biochem. 2011;150(5):563–8. doi: 10.1093/jb/mvr096 PubMed DOI

Warburg O., Christian W. Biochem. Z. 266, 377–411 (1933).

Schaller F, Biesgen C, Müssig C, Altmann T, Weiler WE. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta. 2000; 210(6):979–84. doi: 10.1007/s004250050706 PubMed DOI

Fitzpatrick TB, Amrhein N, Macheroux P. Characterization of YqjM, an Old Yellow Enzyme Homolog from Bacillus subtilis Involved in the Oxidative Stress Response. J Biol Chem. 2003;278(22):19891–7. doi: 10.1074/jbc.M211778200 PubMed DOI

Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, et al. Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast. J Biol Chem. 2007;282(49):36010–23. doi: 10.1074/jbc.M704058200 PubMed DOI

Nizam S, Verma S, Borah NN, Gazara RK, Verma PK. Comprehensive genome-wide analysis reveals different classes of enigmatic old yellow enzyme in fungi. Sci Rep. 2014;4:4013 doi: 10.1038/srep04013 PubMed DOI PMC

Amato ED, Stewart JD. Applications of protein engineering to members of the old yellow enzyme family. Biotechnol Adv. 2015;33(5):624–31. doi: 10.1016/j.biotechadv.2015.04.011 PubMed DOI

Kanekar PP, Sarnaik SS, Dautpure PS, Patil VP, Kanekar SP. Bioremediation of Nitroexplosive Waste Waters In: Singh NS, editor. Biological Remediation of Explosive Residues. Cham: Springer International Publishing; 2014. p. 67–86.

Murta SM, Krieger MA, Montenegro LR, Campos FF, Probst CM, Avila AR, et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol. 2006;146(2):151–62. doi: 10.1016/j.molbiopara.2005.12.001 PubMed DOI

Kubata BK, Kabututu Z, Nozaki T, Munday CJ, Fukuzumi S, Ohkubo K, et al. A Key Role for Old Yellow Enzyme in the Metabolism of Drugs by Trypanosoma cruzi. J Exp Med. 2002;196(9):1241–52. doi: 10.1084/jem.20020885 PubMed DOI PMC

Miura K, Tomioka Y, Suzuki H, Yonezawa M, Hishinuma T, Mizugaki M. Molecular cloning of the NemA gene encoding N-ethylmaleimide reductase from Escherichia coli. Biol Pharm Bull. 1997;20(1):110–2. PubMed

Brige A, Van den Hemel D, Carpentier W, De Smet L, Van Beeumen JJ. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function. Biochem J. 2006;394(Pt 1):335–44. doi: 10.1042/BJ20050979 PubMed DOI PMC

French CE, Bruce NC. Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem J. 1994;301(1):97–103. PubMed PMC

Zahradník J., Nunvar J., Pařízková H., Kolářová L., Palyzová A., Marešová H., et al. Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst. Appl. Microbiol. 2018; in press; S0723-2020(18)30023-7. doi: 10.1016/j.syapm.2018.01.003 PubMed DOI

Kyslíková E, Babiak P, Štěpánek V, Zahradník J, Palyzová A, Marešová H, et al. Biotransformation of codeine to 14-OH-codeine derivatives by Rhizobium radiobacter R89-1. J Molecul Catal B: Enzymatic. 2013;87:1–5.

Zahradník J, Kyslíková E, Kyslík P. Draft Genome Sequence of Agrobacterium sp. Strain R89-1, a Morphine Alkaloid-Biotransforming Bacterium. Genome Announc. 2016;4(2). PubMed PMC

Wick A, Wagner M, Ternes TA. Elucidation of the transformation pathway of the opium alkaloid codeine in biological wastewater treatment. Environl Sci Technol. 2011;45(8):3374–85. PubMed

Oberdorfer G, Binter A, Wallner S, Durchschein K, Hall M, Faber K, et al. The Structure of Glycerol Trinitrate Reductase NerA from Agrobacterium radiobacter Reveals the Molecular Reason for Nitro- and Ene-Reductase Activity in OYE Homologues. Chembiochem. 2013;14(7):836–45. doi: 10.1002/cbic.201300136 PubMed DOI PMC

Kabsch W. XDS. Acta Crystalogr D: Biol Crystallogr. 2010;66(Pt 2):125–32. PubMed PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D: Biol Crystallogr. 2011;67(Pt 4):235–42. PubMed PMC

Long F, Vagin AA, Young P, Murshudov GN. BALBES: a molecular-replacement pipeline. Acta Crystallogr D: Biol Crystallogr. 2008;64(Pt 1):125–32. PubMed PMC

Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D: Biol Crystallogr. 2011;67(Pt 4):355–67. PubMed PMC

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D, Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–32. PubMed

Böhm G. CDNN—CD Spectra Deconvolution. Version; 1997.

Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223–31. PubMed

Okonechnikov K, Golosova O, Fursov M, team tU. Unipro UGENE: a unified bioinformatics toolkit. Bioinform. 2012;28(8):1166–7. PubMed

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30(12):2725–9. doi: 10.1093/molbev/mst197 PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI

Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model. 2011;51(10):2778–86. doi: 10.1021/ci200227u PubMed DOI

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acid Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201 PubMed DOI PMC

Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers; 2011:61–78.

Deng W, Li C, Xie J. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signall. 2013;25(7):1608–13. PubMed

MacLellan SR, MacLean AM, Finan TM. Promoter prediction in the rhizobia. Microbiol. 2006;152(6):1751–63. PubMed

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. doi: 10.1002/jcc.21334 PubMed DOI PMC

Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61. PubMed

Schneider B, Gelly J-C, de Brevern AG, Černý J. Local dynamics of proteins and DNA evaluated from crystallographic B factors. Acta Crystallogr D: Biol Crystallogr. 2014;70(Pt 9):2413–9. PubMed PMC

Barna T, Messiha HL, Petosa C, Bruce NC, Scrutton NS, Moody PCE. Crystal Structure of Bacterial Morphinone Reductase and Properties of the C191A Mutant Enzyme. J Biol Chem. 2002;277(34):30976–83. doi: 10.1074/jbc.M202846200 PubMed DOI

Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell. 2003;112(6):859–71. PubMed

Liu G, Bafico A, Harris VK, Aaronson SA. A Novel Mechanism for Wnt Activation of Canonical Signaling through the LRP6 Receptor. Mol Cell Biol. 2003;23(16):5825–35. doi: 10.1128/MCB.23.16.5825-5835.2003 PubMed DOI PMC

Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, et al. Crystal structure of 12-oxophytodienoate reductase 3 from tomato: Self-inhibition by dimerization. Proc Natl Acad Sci U S A. 2006;103(39):14337–42. doi: 10.1073/pnas.0606603103 PubMed DOI PMC

Malone TE, Madson SE, Wrobel RL, Jeon WB, Rosenberg NS, Johnson KA, et al. X-ray structure of Arabidopsis At2g06050, 12-oxophytodienoate reductase isoform 3. Proteins. 2005;58(1):243–5. doi: 10.1002/prot.20162 PubMed DOI

Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. PLoS ONE. 2015;10(5):e0126124 doi: 10.1371/journal.pone.0126124 PubMed DOI PMC

Marshall SJ, Krause D, Blencowe DK, White GF. Characterization of Glycerol Trinitrate Reductase (NerA) and the Catalytic Role of Active-Site Residues. J Bacteriol. 2004;186(6):1802–10. doi: 10.1128/JB.186.6.1802-1810.2004 PubMed DOI PMC

Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, et al. The 1.3 Å Crystal Structure of the Flavoprotein YqjM Reveals a Novel Class of Old Yellow Enzymes. J Biol Chem. 2005;280(30):27904–13. doi: 10.1074/jbc.M502587200 PubMed DOI

Adalbjörnsson BV, Toogood HS, Fryszkowska A, Pudney CR, Jowitt TA, Leys D, et al. Biocatalysis with Thermostable Enzymes: Structure and Properties of a Thermophilic ‘ene’-Reductase related to Old Yellow Enzyme. ChemBioChem. 2010;11(2):197–207. doi: 10.1002/cbic.200900570 PubMed DOI

Spiegelhauer O, Werther T, Mende S, Knauer SH, Dobbek H. Determinants of substrate binding and protonation in the flavoenzyme xenobiotic reductase A. J Mol Biol. 2010;403(2):286–98. doi: 10.1016/j.jmb.2010.08.047 PubMed DOI

Ehira S, Teramoto H, Inui M, Yukawa H. A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. Microbiol. 2010;156(5):1335–41. PubMed

Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 2001;498(1):98–103. PubMed

Koerkamp MG, Rep M, Bussemaker HJ, Hardy GP, Mul A, Piekarska K, et al. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell. 2002;13(8):2783–94. doi: 10.1091/mbc.E02-02-0075 PubMed DOI PMC

Umezawa Y, Shimada T, Kori A, Yamada K, Ishihama A. The Uncharacterized Transcription Factor YdhM Is the Regulator of the nemA Gene, Encoding N-Ethylmaleimide Reductase. J Bacteriol. 2008;190(17):5890–7. doi: 10.1128/JB.00459-08 PubMed DOI PMC

van den Hemel D, Brigé A, Savvides SN, Van Beeumen J. Ligand-induced Conformational Changes in the Capping Subdomain of a Bacterial Old Yellow Enzyme Homologue and Conserved Sequence Fingerprints Provide New Insights into Substrate Binding. J Biol Chem. 2006;281(38):28152–61. doi: 10.1074/jbc.M603946200 PubMed DOI

Chilton AS, Ellis AL, Lamb AL. Structure of an Aspergillus fumigatus old yellow enzyme (EasA) involved in ergot alkaloid biosynthesis. Acta Crystallogr F, Struct Biol Commun. 2014;70(Pt 10):1328–32. PubMed PMC

Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell Mol Sci. 2008;65(24):3895–906. PubMed PMC

Garadnay S, Gyulai Z, Makleit S, Sipos A. First synthesis of important secondary oxidative metabolites of morphine and codeine with the Michael addition. Open Chemistry 2013. p. 430.

Brown BJ, Deng Z, Karplus PA, Massey V. On the Active Site of Old Yellow Enzyme: Role of histidine 191 and asparagine 194. J Biol Chem. 1998;273(49):32753–62. PubMed

Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PCE. Crystal structure of pentaerythritol tetranitrate reductase: “flipped” binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol. 2001;310(2):433–47. doi: 10.1006/jmbi.2001.4779 PubMed DOI

Willey DL, Caswell DA, Lowe CR, Bruce NC. Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochem J. 1993;290(Pt 2):539–44. PubMed PMC

Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B. Crystal Structure Determination and Mutagenesis Analysis of the Ene Reductase NCR. ChemBioChem. 2012;13(16):2400–7. doi: 10.1002/cbic.201200404 PubMed DOI

Blehert DS, Knoke KL, Fox BG, Chambliss GH. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol. 1997;179(22):6912–20. PubMed PMC

Snape JR, Walkley NA, Morby AP, Nicklin S, White GF. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. J Bacteriol. 1997;179(24):7796–802. PubMed PMC

Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H. Cysteine as a Modulator Residue in the Active Site of Xenobiotic Reductase A: A Structural, Thermodynamic and Kinetic Study. J Mol Biol. 2010;398(1):66–82. doi: 10.1016/j.jmb.2010.02.044 PubMed DOI

Williams RE, Rathbone DA, Scrutton NS, Bruce NC. Biotransformation of Explosives by the Old Yellow Enzyme Family of Flavoproteins. Appl Environl Microbiol. 2004;70(6):3566–74. PubMed PMC

Schittmayer M, Glieder A, Uhl MK, Winkler A, Zach S, Schrittwieser JH, et al. Old Yellow Enzyme-Catalyzed Dehydrogenation of Saturated Ketones. Adv Synth Catal. 2011;353(2–3):268–74.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...