Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/M003949
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) - International
WT 094751
Wellcome Trust (Wellcome) - International
WT 098051
Wellcome Trust (Wellcome) - International
BB/J500732/1
Biotechnology and Biological Sciences Research Council - United Kingdom
WT 086823/Z/08/Z
Wellcome Trust - United Kingdom
PubMed
31772378
PubMed Central
PMC6879476
DOI
10.1038/s41598-019-54154-6
PII: 10.1038/s41598-019-54154-6
Knihovny.cz E-resources
- MeSH
- Caenorhabditis elegans genetics MeSH
- Cholestenes pharmacology MeSH
- Gene Deletion MeSH
- Species Specificity MeSH
- Gene Ontology MeSH
- Haemonchus drug effects genetics growth & development MeSH
- Larva MeSH
- RNA, Messenger genetics metabolism MeSH
- MicroRNAs biosynthesis genetics MeSH
- Caenorhabditis elegans Proteins genetics MeSH
- Receptor, Insulin genetics MeSH
- RNA, Helminth biosynthesis genetics MeSH
- Gene Expression Regulation, Developmental drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cholestenes MeSH
- DAF-2 protein, C elegans MeSH Browser
- dafachronic acid MeSH Browser
- RNA, Messenger MeSH
- MicroRNAs MeSH
- Caenorhabditis elegans Proteins MeSH
- Receptor, Insulin MeSH
- RNA, Helminth MeSH
Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.
See more in PubMed
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell. Biol. 2009;21:452–460. doi: 10.1016/j.ceb.2009.04.009. PubMed DOI
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 2016;231:25–30. doi: 10.1002/jcp.25056. PubMed DOI PMC
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discovery. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI
Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev. Med. Chem. 2015;15:467–474. doi: 10.2174/1389557515666150324123208. PubMed DOI PMC
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-y. PubMed DOI
Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906. doi: 10.1038/35002607. PubMed DOI
Miska EA, et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3:e215. doi: 10.1371/journal.pgen.0030215. PubMed DOI PMC
Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:845–849. doi: 10.1038/nature02255. PubMed DOI
Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL. Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr. Biol. 2010;20:1321–1325. doi: 10.1016/j.cub.2010.05.062. PubMed DOI PMC
Kudlow BA, Zhang L, Han M. Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol. Cell. 2012;46:530–541. doi: 10.1016/j.molcel.2012.03.011. PubMed DOI PMC
Kasuga H, Fukuyama M, Kitazawa A, Kontani K, Katada T. The microRNA miR-235 couples blast-cell quiescence to the nutritional state. Nature. 2013;497:503–506. doi: 10.1038/nature12117. PubMed DOI
Britton C, Winter AD, Gillan V, Devaney E. microRNAs of parasitic helminths - Identification, characterization and potential as drug targets. Int. J. Parasitol. Drugs Drug Resist. 2014;24:85–94. doi: 10.1016/j.ijpddr.2014.03.001. PubMed DOI PMC
Winter AD, et al. Diversity in parasitic nematode genomes: the microRNAs of Brugia and Haemonchus are largely novel. BMC Genomics. 2012;13:4. doi: 10.1186/1471-2164-13-4. PubMed DOI PMC
Hotez P, Hawdon J, Schad GA. Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans daf-c paradigm. Parasitol. Today. 1993;9:23–26. doi: 10.1016/0169-4758(93)90159-D. PubMed DOI
Fielenbach N, Antebi A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008;22:2149–2165. doi: 10.1101/gad.1701508. PubMed DOI PMC
Li F, et al. Hc-daf-2 encodes an insulin-like receptor kinase in the barber’s pole worm, Haemonchus contortus, and restores partial dauer regulation. Int. J. Parasitol. 2014;44:485–496. doi: 10.1016/j.ijpara.2014.03.005. PubMed DOI PMC
Hu M, et al. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida) Int. J. Parasitol. 2010;40:405–415. doi: 10.1016/j.ijpara.2009.09.005. PubMed DOI PMC
Castelleto ML, Massey HC, Jr., Lok JB. Morphogenesis of Strongyloides stercoralis infective larvae requires the DAF-16 orthologue FKTF-1. PLoS Pathog. 2009;5:e1000370. doi: 10.1371/journal.ppat.1000370. PubMed DOI PMC
Albarqi MMY, et al. Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathog. 2015;12:e1005358. doi: 10.1371/journal.ppat.1005358. PubMed DOI PMC
Laing R, et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC
Schwarz EM, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. doi: 10.1186/gb-2013-14-8-r89. PubMed DOI PMC
Doyle SR, et al. A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biol. Evol. 2017;10:396–409. doi: 10.1093/gbe/evx269. PubMed DOI PMC
Blaxter ML, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392:71–75. doi: 10.1038/32160. PubMed DOI
Kaplan RM, Vidyashankar AN. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2014;186:70–78. doi: 10.1016/j.vetpar.2011.11.048. PubMed DOI
Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 1999;10:87–95. doi: 10.1006/dbio.1999.9272. PubMed DOI
Martinez NJ, et al. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008;18:2005–2015. doi: 10.1101/gr.083055.108. PubMed DOI PMC
Ma G, et al. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Int. J. Parasitol. 2018;48:763–772. doi: 10.1016/j.ijpara.2018.03.008. PubMed DOI
Wang Z, et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci USA. 2009;106:9138–9143. doi: 10.1073/pnas.0904064106. PubMed DOI PMC
Ma G, et al. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathog. 2019;15:e1007960. doi: 10.1371/journal.ppat.1007960. PubMed DOI PMC
Xu Y, He Z, Song M, Zhou Y, Shen YA. microRNA switch controls dietary restriction-induced longevity through Wnt signaling. EMBO Rep. 2019;20:e46888. doi: 10.15252/embr.201846888. PubMed DOI PMC
Smith-Vikos T, et al. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr. Biol. 2014;24:2238–2246. doi: 10.1016/j.cub.2014.08.013. PubMed DOI PMC
Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor family member that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942–946. doi: 10.1126/science.277.5328.942. PubMed DOI
Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003;300:644–647. doi: 10.1126/science.1083614. PubMed DOI
McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003;1:111–121. doi: 10.1046/j.1474-9728.2003.00043.x. PubMed DOI
Gems D, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998;150:129–155. PubMed PMC
Apfeld J, Kenyon C. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and lifespan. Cell. 1998;95:199–210. doi: 10.1016/s0092-8674(00)81751-1. PubMed DOI
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007;39:1278–1284. doi: 10.1038/ng2135. PubMed DOI
Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature. 2011;469:97–101. doi: 10.1038/nature09616. PubMed DOI PMC
Habacher C, et al. Ribonuclease-mediated control of body fat. Dev. Cell. 2016;39:359–369. doi: 10.1016/j.devcel.2016.09.018. PubMed DOI
Thyagarajan B, et al. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001125. doi: 10.1371/journal.pgen.1001125. PubMed DOI PMC
Fuchs S, et al. A metabolic signature of long life in Caenorhabditis elegans. BMC Biol. 2010;8:14. doi: 10.1186/1741-7007-8-14. PubMed DOI PMC
John B, et al. Human microRNA targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363. PubMed DOI PMC
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–1517. doi: 10.1261/rna.5248604. PubMed DOI PMC
Winter AD, et al. A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites. BMC Genomics. 2015;16:331. doi: 10.1186/s12864-015-1536-y. PubMed DOI PMC
Gao F, et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol. 2012;13:R100. doi: 10.1186/gb-2012-13-10-r100. PubMed DOI PMC
Perfus-Barbeoch L, et al. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Front. Physiol. 2014;5:211. doi: 10.3389/fphys.2014.00211. PubMed DOI PMC
Marek M, et al. Drugging the schistosome zinc-dependent HDACs: current progress and future perspectives. Future Med. Chem. 2015;7:783–800. doi: 10.4155/fmc.15.25. PubMed DOI
Roquis D, et al. The epigenome of Schistosoma mansoni provides insight about how cercariae poise transcription until infection. PLoS NTD. 2015;9:e0003853. doi: 10.1371/journal.pntd.0003853. PubMed DOI PMC
Wang J, et al. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 2011;21:1462–1477. doi: 10.1101/gr.121426.111. PubMed DOI PMC
Zhang X, Zabinsky R, Teng Y, Cui M, Han M. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc. Natl. Acad. Sci. USA. 2011;108:17997–18002. doi: 10.1073/pnas.1105982108. PubMed DOI PMC
Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA. 2011;17:639–651. doi: 10.1261/rna.2310111. PubMed DOI PMC
Samarsinghe B, Knox DP, Britton C. Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. Int. J. Parasitol. 2011;41:51–59. doi: 10.1016/j.ijpara.2010.07.005. PubMed DOI
Zhu L, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum. PLoS Pathog. 2016;12:e1005423. doi: 10.1371/journal.ppat.1005423. PubMed DOI PMC
Hagen J, et al. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat. Comm. 2014;5:5375. doi: 10.1038/ncomms6375. PubMed DOI PMC
Gang SS, et al. Targeted mutagenesis in a human-parasitic nematode. PLoS Pathog. 2017;13:e1006675. doi: 10.1371/journal.ppat.1006675. PubMed DOI PMC
Mohandas N, et al. Reconstruction of the insulin-like signaling pathway of Haemonchus contortus. Parasit. Vectors. 2016;9:64. doi: 10.1186/s13071-016-1341-8. PubMed DOI PMC
Braeckman, B. P., Houthoofd, K. & Vanfleteren, J. R. Intermediary metabolism. In Wormbook (ed. Wormbook, The C. elegans Research Community), 10.1895/wormbook.1.146.1, http://www.wormbook.org (February 16, 2009). PubMed PMC
Lee JS, et al. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc. Natl. Acad. Sci. USA. 2017;114:E10726–E10735. doi: 10.1073/pnas.1710374114. PubMed DOI PMC
Taylor CM, et al. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog. 2013;9:e1003505. doi: 10.1371/journal.ppat.1003505. PubMed DOI PMC
Tyagi R, et al. Small molecule inhibitors of metabolic enzymes repurposed as a new class of anthelmintics. ACS Infect. Dis. 2018;4:1130–1145. doi: 10.1021/acsinfecdis.8b00090. PubMed DOI PMC
Rehman A, Jasmer DP. A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. Mol. Biochem. Parasitol. 1998;97:55–68. doi: 10.1016/s0166-6851(98)00132-7. PubMed DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Series B. 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Shen X, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell. 2001;107:893–903. doi: 10.1016/s0092-8674(01)00612-2. PubMed DOI
Gillan V, et al. Increased expression of a microRNA correlates with anthelmintic resistance in parasitic nematodes. Front. Cell. Infect. Microbiol. 2017;7:452. doi: 10.3389/fcimb.2017.00452. PubMed DOI PMC
Marín RM, Vaníek J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2011;39:19–29. doi: 10.1093/nar/gkq768. PubMed DOI PMC
Huang daW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Golden JW, Riddle DL. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science. 1982;218:578–580. doi: 10.1126/science.6896933. PubMed DOI
Allion M, Thomas JH. Dauer formation induced by high temperature in Caenorhabditis elegans. Genetics. 2000;156:1047–1067. PubMed PMC
Allion M, Thomas JH. Isolation and characterization of high-temperature-induced daur formation mutants in Caenorhabditis elegans. Genetics. 2003;165:127–144. PubMed PMC