• This record comes from PubMed

Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development

. 2019 Nov 26 ; 9 (1) : 17594. [epub] 20191126

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/M003949 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) - International
WT 094751 Wellcome Trust (Wellcome) - International
WT 098051 Wellcome Trust (Wellcome) - International
BB/J500732/1 Biotechnology and Biological Sciences Research Council - United Kingdom
WT 086823/Z/08/Z Wellcome Trust - United Kingdom

Links

PubMed 31772378
PubMed Central PMC6879476
DOI 10.1038/s41598-019-54154-6
PII: 10.1038/s41598-019-54154-6
Knihovny.cz E-resources

Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.

See more in PubMed

Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell. Biol. 2009;21:452–460. doi: 10.1016/j.ceb.2009.04.009. PubMed DOI

Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 2016;231:25–30. doi: 10.1002/jcp.25056. PubMed DOI PMC

Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discovery. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI

Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev. Med. Chem. 2015;15:467–474. doi: 10.2174/1389557515666150324123208. PubMed DOI PMC

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-y. PubMed DOI

Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906. doi: 10.1038/35002607. PubMed DOI

Miska EA, et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3:e215. doi: 10.1371/journal.pgen.0030215. PubMed DOI PMC

Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:845–849. doi: 10.1038/nature02255. PubMed DOI

Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL. Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr. Biol. 2010;20:1321–1325. doi: 10.1016/j.cub.2010.05.062. PubMed DOI PMC

Kudlow BA, Zhang L, Han M. Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol. Cell. 2012;46:530–541. doi: 10.1016/j.molcel.2012.03.011. PubMed DOI PMC

Kasuga H, Fukuyama M, Kitazawa A, Kontani K, Katada T. The microRNA miR-235 couples blast-cell quiescence to the nutritional state. Nature. 2013;497:503–506. doi: 10.1038/nature12117. PubMed DOI

Britton C, Winter AD, Gillan V, Devaney E. microRNAs of parasitic helminths - Identification, characterization and potential as drug targets. Int. J. Parasitol. Drugs Drug Resist. 2014;24:85–94. doi: 10.1016/j.ijpddr.2014.03.001. PubMed DOI PMC

Winter AD, et al. Diversity in parasitic nematode genomes: the microRNAs of Brugia and Haemonchus are largely novel. BMC Genomics. 2012;13:4. doi: 10.1186/1471-2164-13-4. PubMed DOI PMC

Hotez P, Hawdon J, Schad GA. Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans daf-c paradigm. Parasitol. Today. 1993;9:23–26. doi: 10.1016/0169-4758(93)90159-D. PubMed DOI

Fielenbach N, Antebi A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008;22:2149–2165. doi: 10.1101/gad.1701508. PubMed DOI PMC

Li F, et al. Hc-daf-2 encodes an insulin-like receptor kinase in the barber’s pole worm, Haemonchus contortus, and restores partial dauer regulation. Int. J. Parasitol. 2014;44:485–496. doi: 10.1016/j.ijpara.2014.03.005. PubMed DOI PMC

Hu M, et al. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida) Int. J. Parasitol. 2010;40:405–415. doi: 10.1016/j.ijpara.2009.09.005. PubMed DOI PMC

Castelleto ML, Massey HC, Jr., Lok JB. Morphogenesis of Strongyloides stercoralis infective larvae requires the DAF-16 orthologue FKTF-1. PLoS Pathog. 2009;5:e1000370. doi: 10.1371/journal.ppat.1000370. PubMed DOI PMC

Albarqi MMY, et al. Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathog. 2015;12:e1005358. doi: 10.1371/journal.ppat.1005358. PubMed DOI PMC

Laing R, et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC

Schwarz EM, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. doi: 10.1186/gb-2013-14-8-r89. PubMed DOI PMC

Doyle SR, et al. A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biol. Evol. 2017;10:396–409. doi: 10.1093/gbe/evx269. PubMed DOI PMC

Blaxter ML, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392:71–75. doi: 10.1038/32160. PubMed DOI

Kaplan RM, Vidyashankar AN. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2014;186:70–78. doi: 10.1016/j.vetpar.2011.11.048. PubMed DOI

Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 1999;10:87–95. doi: 10.1006/dbio.1999.9272. PubMed DOI

Martinez NJ, et al. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008;18:2005–2015. doi: 10.1101/gr.083055.108. PubMed DOI PMC

Ma G, et al. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Int. J. Parasitol. 2018;48:763–772. doi: 10.1016/j.ijpara.2018.03.008. PubMed DOI

Wang Z, et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci USA. 2009;106:9138–9143. doi: 10.1073/pnas.0904064106. PubMed DOI PMC

Ma G, et al. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathog. 2019;15:e1007960. doi: 10.1371/journal.ppat.1007960. PubMed DOI PMC

Xu Y, He Z, Song M, Zhou Y, Shen YA. microRNA switch controls dietary restriction-induced longevity through Wnt signaling. EMBO Rep. 2019;20:e46888. doi: 10.15252/embr.201846888. PubMed DOI PMC

Smith-Vikos T, et al. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr. Biol. 2014;24:2238–2246. doi: 10.1016/j.cub.2014.08.013. PubMed DOI PMC

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor family member that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942–946. doi: 10.1126/science.277.5328.942. PubMed DOI

Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003;300:644–647. doi: 10.1126/science.1083614. PubMed DOI

McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003;1:111–121. doi: 10.1046/j.1474-9728.2003.00043.x. PubMed DOI

Gems D, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998;150:129–155. PubMed PMC

Apfeld J, Kenyon C. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and lifespan. Cell. 1998;95:199–210. doi: 10.1016/s0092-8674(00)81751-1. PubMed DOI

Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007;39:1278–1284. doi: 10.1038/ng2135. PubMed DOI

Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature. 2011;469:97–101. doi: 10.1038/nature09616. PubMed DOI PMC

Habacher C, et al. Ribonuclease-mediated control of body fat. Dev. Cell. 2016;39:359–369. doi: 10.1016/j.devcel.2016.09.018. PubMed DOI

Thyagarajan B, et al. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001125. doi: 10.1371/journal.pgen.1001125. PubMed DOI PMC

Fuchs S, et al. A metabolic signature of long life in Caenorhabditis elegans. BMC Biol. 2010;8:14. doi: 10.1186/1741-7007-8-14. PubMed DOI PMC

John B, et al. Human microRNA targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363. PubMed DOI PMC

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–1517. doi: 10.1261/rna.5248604. PubMed DOI PMC

Winter AD, et al. A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites. BMC Genomics. 2015;16:331. doi: 10.1186/s12864-015-1536-y. PubMed DOI PMC

Gao F, et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol. 2012;13:R100. doi: 10.1186/gb-2012-13-10-r100. PubMed DOI PMC

Perfus-Barbeoch L, et al. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Front. Physiol. 2014;5:211. doi: 10.3389/fphys.2014.00211. PubMed DOI PMC

Marek M, et al. Drugging the schistosome zinc-dependent HDACs: current progress and future perspectives. Future Med. Chem. 2015;7:783–800. doi: 10.4155/fmc.15.25. PubMed DOI

Roquis D, et al. The epigenome of Schistosoma mansoni provides insight about how cercariae poise transcription until infection. PLoS NTD. 2015;9:e0003853. doi: 10.1371/journal.pntd.0003853. PubMed DOI PMC

Wang J, et al. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 2011;21:1462–1477. doi: 10.1101/gr.121426.111. PubMed DOI PMC

Zhang X, Zabinsky R, Teng Y, Cui M, Han M. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc. Natl. Acad. Sci. USA. 2011;108:17997–18002. doi: 10.1073/pnas.1105982108. PubMed DOI PMC

Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA. 2011;17:639–651. doi: 10.1261/rna.2310111. PubMed DOI PMC

Samarsinghe B, Knox DP, Britton C. Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. Int. J. Parasitol. 2011;41:51–59. doi: 10.1016/j.ijpara.2010.07.005. PubMed DOI

Zhu L, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum. PLoS Pathog. 2016;12:e1005423. doi: 10.1371/journal.ppat.1005423. PubMed DOI PMC

Hagen J, et al. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat. Comm. 2014;5:5375. doi: 10.1038/ncomms6375. PubMed DOI PMC

Gang SS, et al. Targeted mutagenesis in a human-parasitic nematode. PLoS Pathog. 2017;13:e1006675. doi: 10.1371/journal.ppat.1006675. PubMed DOI PMC

Mohandas N, et al. Reconstruction of the insulin-like signaling pathway of Haemonchus contortus. Parasit. Vectors. 2016;9:64. doi: 10.1186/s13071-016-1341-8. PubMed DOI PMC

Braeckman, B. P., Houthoofd, K. & Vanfleteren, J. R. Intermediary metabolism. In Wormbook (ed. Wormbook, The C. elegans Research Community), 10.1895/wormbook.1.146.1, http://www.wormbook.org (February 16, 2009). PubMed PMC

Lee JS, et al. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc. Natl. Acad. Sci. USA. 2017;114:E10726–E10735. doi: 10.1073/pnas.1710374114. PubMed DOI PMC

Taylor CM, et al. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog. 2013;9:e1003505. doi: 10.1371/journal.ppat.1003505. PubMed DOI PMC

Tyagi R, et al. Small molecule inhibitors of metabolic enzymes repurposed as a new class of anthelmintics. ACS Infect. Dis. 2018;4:1130–1145. doi: 10.1021/acsinfecdis.8b00090. PubMed DOI PMC

Rehman A, Jasmer DP. A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. Mol. Biochem. Parasitol. 1998;97:55–68. doi: 10.1016/s0166-6851(98)00132-7. PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Series B. 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Shen X, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell. 2001;107:893–903. doi: 10.1016/s0092-8674(01)00612-2. PubMed DOI

Gillan V, et al. Increased expression of a microRNA correlates with anthelmintic resistance in parasitic nematodes. Front. Cell. Infect. Microbiol. 2017;7:452. doi: 10.3389/fcimb.2017.00452. PubMed DOI PMC

Marín RM, Vaníek J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2011;39:19–29. doi: 10.1093/nar/gkq768. PubMed DOI PMC

Huang daW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Golden JW, Riddle DL. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science. 1982;218:578–580. doi: 10.1126/science.6896933. PubMed DOI

Allion M, Thomas JH. Dauer formation induced by high temperature in Caenorhabditis elegans. Genetics. 2000;156:1047–1067. PubMed PMC

Allion M, Thomas JH. Isolation and characterization of high-temperature-induced daur formation mutants in Caenorhabditis elegans. Genetics. 2003;165:127–144. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...