Transient and Steady Pervaporation of 1-Butanol-Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane

. 2019 Nov 26 ; 11 (12) : . [epub] 20191126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31779231

Grantová podpora
18-08389S Grantová Agentura České Republiky
LTACH-17006 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/16_027/0008351 European structure and investment funds, OP RDE-funded project ChemJets UCT Prague

The transient and steady pervaporation of 1-butanol-water mixtures through a poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membrane was studied to observe and elucidate the diffusion phenomena in this high-performing organophilic glassy polymer. Pervaporation was studied in a continuous sequence of experiments under conditions appropriate for the separation of bio-butanol from fermentation broths: feed concentrations of 1.5, 3.0 and 4.5 w/w % of 1-butanol in nutrient-containing (yeast extract) water, temperatures of 37, 50 and 63 °C, and a time period of 80 days. In addition, concentration polarization was assessed. As expected, the total flux and individual component permeabilities declined discernibly over the study period, while the separation factor (average β = 82) and selectivity towards 1-butanol (average α = 2.6) remained practically independent of the process conditions tested. Based on measurements of pervaporation transients, for which a new apparatus and model were developed, we found that the diffusivity of 1-butanol in PTMSP decreased over time due to aging and was comparable to that observed using microgravimetry in pure vapor in 1-butanol. Hence, despite the gradual loss of free volume of the aging polymer, the PTMSP membrane showed high and practically independent selectivity towards 1-butanol. Additionally, a new technique for the measurement and evaluation of pervaporation transients using Fourier transform infrared spectroscopy (FTIR) analysis of permeate was proposed and validated.

Zobrazit více v PubMed

Birgen C., Dürre P., Preisig H.A., Wentzel A. Butanol production from lignocellulosic biomass: Revisiting fermentation performance indicators with exploratory data analysis. Biotechnol. Biofuels. 2019;12:167. doi: 10.1186/s13068-019-1508-6. PubMed DOI PMC

Dürre P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007;2:1525–1534. doi: 10.1002/biot.200700168. PubMed DOI

Bharathiraja B., Jayamuthunagai J., Sudharsanaa T., Bharghavi A., Praveenkumar R., Chakravarthy M., Yuvaraj D. Biobutanol–An impending biofuel for future: A review on upstream and downstream processing tecniques. Renew. Sustain. Energy Rev. 2017;68:788–807. doi: 10.1016/j.rser.2016.10.017. DOI

Pereira L., Chagas M., Dias M., Cavalett O., Bonomi A. Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J. Clean. Prod. 2015;96:557–568. doi: 10.1016/j.jclepro.2014.01.059. DOI

Abdehagh N., Tezel F., Thibault J. Separation techniques in butanol production: Challenges and developments. Biomass Bioenergy. 2014;60:222–246. doi: 10.1016/j.biombioe.2013.10.003. DOI

Zhu Y., Xin F., Chang Y., Zhao Y., Weichong W. Feasibility of reed for biobutanol production hydrolyzed by crude cellulase. Biomass Bioenergy. 2015;76:24–30. doi: 10.1016/j.biombioe.2015.02.013. DOI

Heitmann S., Krüger V., Welz D., Lutze P. Experimental investigation of pervaporation membranes for biobutanol separation. J. Membr. Sep. Technol. 2013;2:245–262.

Kumar M., Gayen K. Developments in biobutanol production: New insight. Appl. Energy. 2011;88:1999–2012. doi: 10.1016/j.apenergy.2010.12.055. DOI

Jadhav S., Harde S., Bankar S., Granström T., Ojamo H., Singhal R., Survase S. A green process for the production of butanol from butyraldehyde using alcohol dehydrogenase: Process details. Rsc Adv. 2014;4:14597–14602. doi: 10.1039/c3ra47821a. DOI

Dong H., Tao W., Dai Z., Yang L., Gong F., Zhang Y., Li Y. Advances in Biochemical Engineering/Biotechnology. Volume 128. Springer; Berlin/Heidelberg, Germany: 2011. Biobutanol; pp. 85–100. PubMed

Qureshi N., Liu S., Ezeji T. Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology. In: James W.L., editor. Advanced Biofuels and Bioproducts. Volume 15. Springer; New York, NY, USA: 2013. pp. 247–265.

Li X., Li Z., Zheng J., Shi Z., Li L. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour. Technol. 2012;125:43–51. doi: 10.1016/j.biortech.2012.08.056. PubMed DOI

Liu X., Gu Q., Liao C., Yu X. Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol–glycerol storage during long-term preservation. Biomass Bioenergy. 2014;69:192–197. doi: 10.1016/j.biombioe.2014.07.019. DOI

García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R. Challenges in biobutanol production: How to improve the efficiency. Renew. Sustain. Energy Rev. 2011;15:964–980. doi: 10.1016/j.rser.2010.11.008. DOI

Mariano A., Qureshi N., Filho R., Ezeji T. Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol. Bioeng. 2011;108:1757–1765. doi: 10.1002/bit.23123. PubMed DOI

Patakova P., Kolek J., Sedlar K., Koscova P., Branska B., Kupkova K., Paulova L., Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. 2018;36:721–738. doi: 10.1016/j.biotechadv.2017.12.004. PubMed DOI

Sharif A.R., Mehrani P., Thibault J. Comparison of in-situ recovery methods of gas stripping, pervaporation, and vacuum separation by multiobjective optimization for producing biobutanol via fermentation process. Can. J. Chem. Eng. 2015;93:986–997. doi: 10.1002/cjce.22186. DOI

Liu C., Wei W., Wu H., Dong X., Jiang M., Jin W. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J. Membr. Sci. 2011;373:121–129. doi: 10.1016/j.memsci.2011.02.042. DOI

Peng P., Shi B., Lan Y. A review of membrane materials for ethanol recovery by pervaporation. Sep. Sci. Technol. 2011;46:234–246. doi: 10.1080/01496395.2010.504681. DOI

Liu F., Liu L., Feng X. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purification Technol. 2005;42:273–282. doi: 10.1016/j.seppur.2004.08.005. DOI

Li S., Srivastava R., Parnas R. Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 2010;363:287–294. doi: 10.1016/j.memsci.2010.07.042. DOI

Azimi H., Tezel F., Thibault J. Effect of embedded activated carbon nanoparticles on the performance of polydimethylsiloxane (PDMS) membrane for pervaporation separation of butanol. J. Chem. Technol. Biotechnol. 2017;92:2901–2911. doi: 10.1002/jctb.5306. DOI

Hickey P.J., Juricic F.P., Slater C.S. The effect of process parameters on the pervaporation of alcohols through organophilic membranes. Sep. Sci. Technol. 1992;27:843–861. doi: 10.1080/01496399208019729. DOI

Schmidt C.L., Myers M.D., Kelley S.S., McMillan J.D., Paducone N. Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation. Appl. Biochem. Biotechnol. 1997;63:469–482. doi: 10.1007/BF02920447. PubMed DOI

Fadeev A.G., Selinskaya Y.A., Kelley S.S., Meagher M.M., Litvinova E.G., Khotimsky V.S., Volkov V.V. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne) J. Membr. Sci. 2001;186:205–217. doi: 10.1016/S0376-7388(00)00683-9. DOI

Fadeev A.G., Kelley S., McMillan J., Selinskaya Y., Khotimsky V., Volkov V.V. Effect of yeast fermentation by-products on poly[1-(trimethylsilyl)-1-propyne] pervaporative performance. J. Membr. Sci. 2003;214:229–238. doi: 10.1016/S0376-7388(02)00550-1. DOI

Pinnau I., Casillas C.G., Morisato A., Freeman B.D. Long-term permeation properties of poly(1-trimethylsilyl-1-propyne) membranes in hydrocarbon—Vapor environment. J. Polym. Sci. Part B: Polym. Phys. 1997;33:1483–1490. doi: 10.1002/(SICI)1099-0488(19970730)35:10<1483::AID-POLB2>3.0.CO;2-T. DOI

Fadeev A.G., Meagher M.M., Kelley S.S., Volkov V.V. Fouling of poly[-1-(trimethylsilyl)-1-propyne] membranes in pervaporative recovery of butanol from aqueous solutions and ABE fermentation broth. J. Membr. Sci. 2000;173:133–144. doi: 10.1016/S0376-7388(00)00359-8. DOI

Zhang G., Cheng H., Pengcheng S., Zhang X., Zheng J., Yinghua L., Qinglin L. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration. Sep. Purif. Technol. 2019;216:83–91. doi: 10.1016/j.seppur.2019.01.080. DOI

Žák M., Klepic M., Štastná L.Č., Sedláková Z., Vychodilová H., Hovorka Š., Friess K., Randová A., Brožová L., Jansen J.C., et al. Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging. Sep. Purif. Technol. 2015;151:108–114. doi: 10.1016/j.seppur.2015.07.041. DOI

Zhou H., Jin W. Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. Membranes. 2019;9:3. doi: 10.3390/membranes9010003. PubMed DOI PMC

Srinivasan R., Auvil S.R., Burban P.M. Elucidating the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes. J. Membr. Sci. 1994;86:67–86. doi: 10.1016/0376-7388(93)E0128-7. DOI

Lakshmanan L.W., Hopfenberg H., Chern R. Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne] J. Membr. Sci. 1990;48:321–331. doi: 10.1016/0376-7388(90)85013-B. DOI

Masuda T., Isobe E., Higashimura T. Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium(V) and tantalum(V) and polymer properties. Macromolecules. 1985;18:841–845. doi: 10.1021/ma00147a003. DOI

Hasegawa Y., Kimura K., Nemoto Y., Nagase T., Kiyozumi Y., Nishide T., Mizukami F. Real-time monitoring of permeation properties through polycrystalline MFI-type zeolite membranes during pervaporation using mass-spectrometry. Sep. Purif. Technol. 2008;58:386–392. doi: 10.1016/j.seppur.2007.05.014. DOI

Bowen T., Wyss J., Noble R., Falconer J. Measurement of diffusion through a zeolite membrane using isotopic-transient pervaporation. Microporous Mesoporous Mater. 2004;71:199–210. doi: 10.1016/j.micromeso.2004.03.032. DOI

Dudek G., Borys P. A Simple Methodology to Estimate the Diffusion Coefficient in Pervaporation-Based Purification Experiments. Polymers. 2019;11:343. doi: 10.3390/polym11020343. PubMed DOI PMC

Gotō A., Takahashi M., Kuwahara N., Kubota K. Numerical simulation of solvent diffusion for binary alcohol mixtures in polyacrylonitrile membrane. J. Membr. Sci. 1995;99:107–115. doi: 10.1016/0376-7388(94)00200-I. DOI

Schafer T., Vital J., Crespo J. Coupled pervaporation/mass spectrometry for investigating membrane mass transport phenomena. J. Membr. Sci. 2004;241:197–205. doi: 10.1016/j.memsci.2004.05.014. DOI

Oh K., Koo Y., Jung K. Characterization of a sheet membrane interface for sample introduction into a time-of-flight mass spectromete. Int. J. Mass Spectrom. 2006;253:65–70. doi: 10.1016/j.ijms.2006.02.017. DOI

Johnson R., Cooks R., Allen T., Cisper M., Hemberger P.H. Membrane introduction mass spectrometry: Trends and applications. Mass Spectrom. Rev. 2000;19:1–37. doi: 10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y. PubMed DOI

Shah M., Noble R., Clough D. Measurement of sorption and diffusion in nonporous membranes by transient permeation experiments. J. Membr. Sci. 2007;287:111–118. doi: 10.1016/j.memsci.2006.10.026. DOI

Vopicka O., Hynek V., Rabová V. Measuring the transient diffusion of vapor mixtures through dense membranes. J. Membr. Sci. 2010;350:217–225. doi: 10.1016/j.memsci.2009.12.031. DOI

Vopicka O., Radotínský D., Friess K. Sorption of vapor mixtures of methanol and dimethyl carbonate in PDMS: Experimental study. Eur. Polym. J. 2015;73:480–486. doi: 10.1016/j.eurpolymj.2015.11.005. DOI

Vopicka O., Hynek V., Zgažar M., Friess K., Šípek M. A new sorption model with a dynamic correction for the determination of diffusion coefficients. J. Membr. Sci. 2009;330:51–56. doi: 10.1016/j.memsci.2008.12.037. DOI

Design Institute for Physical Properties, Sponsored by AICHE (2005; 2008; 2009; 2010). Dippr Project 801—Full Version. Design Institute for Physical Property Research/AICHE. [(accessed on 12 August 2019)]; Available online: http://knovel.com/web/portal/browse/display?_ext_knovel_display_bookid=1187&verticalid=0.

Nagai K., Higuchi A., Nakagawa T. Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) membranes. J. Polym. Sci. Part B Polym. Phys. 1995;33:289–298. doi: 10.1002/polb.1995.090330214. DOI

Barker J.J., Treybal R.E. Mass transfer coefficients for solids suspended in agitated liquids. AIChE J. 1960;6:289–295. doi: 10.1002/aic.690060223. DOI

Vopicka O., Pilnácek K., Cíhal P., Friess K. Sorption of methanol, dimethyl carbonate, methyl acetate, and acetone vapors in CTA and PTMSP: General findings from the GAB Analysis. J. Polym. Sci. Part B Polym. Phys. 2015;54:561–569. doi: 10.1002/polb.23945. DOI

Radotínský D., Vopicka O., Hynek V., Izák P., Friess K. Aparatura Pro Stanovení Sorpce a Permeace Organických Par V Polymerech Pomocí InfraNoervené Spektroskopie. Chem. Listy. 2015;109:619–624. (In Czech)

Daynes H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. 1920;97:286–307. doi: 10.1098/rspa.1920.0034. DOI

Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press; London, UK: 1975. pp. 69–88.

Kappert E.J., Raaijmakers M.J., Tempelman K., Cuperus F.P., Ogieglo W., Benes N.E. Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. J. Membr. Sci. 2019;569:177–199. doi: 10.1016/j.memsci.2018.09.059. DOI

Cihal P., Vopicka O., Pilnacek K., Poustka J., Friess K., Hajšlová J., Dobiáš J., Dole P. Aroma scalping characteristics of polybutylene succinate based films. Polym. Test. 2015;46:108–115. doi: 10.1016/j.polymertesting.2015.07.006. DOI

Torra V., Tachoire H. Conduction Calorimeters Heat Transmission Systems with Uncertainties. J. Therm. Anal. Calorim. 1998;52:663–681. doi: 10.1023/A:1010181617076. DOI

LePage W. Complex Variables and the Laplace Transform for Engineers. Dover Publications, Inc.; New York, NY, USA: 1961.

Oberhettinger F., Badii L. Tables of Laplace Transforms. Springer; Berlin, Germany: 1973.

Baker R., Wijmans J., Huang Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI

Renon H., Prausnitz J. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–144. doi: 10.1002/aic.690140124. DOI

KoichiI W., Hitoshi K. A correlation method for isobaric vapor–liquid and vapor–liquid–liquid equilibria data of binary systems. Fluid Phase Equilibria. 2008;266:202–210.

Nakanishi K., Odani H., Kurata M., Masuda T., Higashimura T. Sorption of Alcohol Vapors in a Disubstituted Polyacetylene. Polym. J. 1987;19:293–296. doi: 10.1295/polymj.19.293. DOI

Tsarkov S., Khotimsky V., Budd P., Volkov V., Kukushkina J., Volkov A. Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature. J. Membr. Sci. 2012;423:65–72. doi: 10.1016/j.memsci.2012.07.026. DOI

Claes S., Vandezande P., Mullens S., van Bael M.K., Maurer F.H.J. Free volume expansion of Poly[1-(trimethylsilyl)-1-propyne] treated in supercritical carbon dioxide as revealed by positron annihilation lifetime spectroscopy. Macromolecules. 2011;44:2766–2772. doi: 10.1021/ma1029345. DOI

Masuda T., Takatsuka M., Tang B.-Z., Higashimura T. Pervaporation of organic liquid—Water mixtures through substituted polyacetylene membrane. J. Membr. Sci. 1990;49:69–83. doi: 10.1016/S0376-7388(00)80778-4. DOI

Dubreuil M., Vandezande P., van Hecke W., Porto-Carrero W., Dotremont C. Study on aging/fouling phenomena and the effect of upstream nanofiltration on in-situ product recovery of n-butanol through poly[1-(trimethylsilyl)-1-propyne] pervaporation membranes. J. Membr. Sci. 2013;447:134–143. doi: 10.1016/j.memsci.2013.07.032. DOI

Tuliakova T., Paschin A., Sedov V. Yeast extracts as safety sources of vitamins, mineral substances and amino acids. Food Ind. 2004;6:2–4. (In Russian)

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane

. 2020 Mar 26 ; 10 (4) : . [epub] 20200326

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...