Transient and Steady Pervaporation of 1-Butanol-Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08389S
Grantová Agentura České Republiky
LTACH-17006
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/16_027/0008351
European structure and investment funds, OP RDE-funded project ChemJets UCT Prague
PubMed
31779231
PubMed Central
PMC6960892
DOI
10.3390/polym11121943
PII: polym11121943
Knihovny.cz E-zdroje
- Klíčová slova
- PTMSP, ageing, butanol, diffusivity, pervaporation, water,
- Publikační typ
- časopisecké články MeSH
The transient and steady pervaporation of 1-butanol-water mixtures through a poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membrane was studied to observe and elucidate the diffusion phenomena in this high-performing organophilic glassy polymer. Pervaporation was studied in a continuous sequence of experiments under conditions appropriate for the separation of bio-butanol from fermentation broths: feed concentrations of 1.5, 3.0 and 4.5 w/w % of 1-butanol in nutrient-containing (yeast extract) water, temperatures of 37, 50 and 63 °C, and a time period of 80 days. In addition, concentration polarization was assessed. As expected, the total flux and individual component permeabilities declined discernibly over the study period, while the separation factor (average β = 82) and selectivity towards 1-butanol (average α = 2.6) remained practically independent of the process conditions tested. Based on measurements of pervaporation transients, for which a new apparatus and model were developed, we found that the diffusivity of 1-butanol in PTMSP decreased over time due to aging and was comparable to that observed using microgravimetry in pure vapor in 1-butanol. Hence, despite the gradual loss of free volume of the aging polymer, the PTMSP membrane showed high and practically independent selectivity towards 1-butanol. Additionally, a new technique for the measurement and evaluation of pervaporation transients using Fourier transform infrared spectroscopy (FTIR) analysis of permeate was proposed and validated.
Zobrazit více v PubMed
Birgen C., Dürre P., Preisig H.A., Wentzel A. Butanol production from lignocellulosic biomass: Revisiting fermentation performance indicators with exploratory data analysis. Biotechnol. Biofuels. 2019;12:167. doi: 10.1186/s13068-019-1508-6. PubMed DOI PMC
Dürre P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007;2:1525–1534. doi: 10.1002/biot.200700168. PubMed DOI
Bharathiraja B., Jayamuthunagai J., Sudharsanaa T., Bharghavi A., Praveenkumar R., Chakravarthy M., Yuvaraj D. Biobutanol–An impending biofuel for future: A review on upstream and downstream processing tecniques. Renew. Sustain. Energy Rev. 2017;68:788–807. doi: 10.1016/j.rser.2016.10.017. DOI
Pereira L., Chagas M., Dias M., Cavalett O., Bonomi A. Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J. Clean. Prod. 2015;96:557–568. doi: 10.1016/j.jclepro.2014.01.059. DOI
Abdehagh N., Tezel F., Thibault J. Separation techniques in butanol production: Challenges and developments. Biomass Bioenergy. 2014;60:222–246. doi: 10.1016/j.biombioe.2013.10.003. DOI
Zhu Y., Xin F., Chang Y., Zhao Y., Weichong W. Feasibility of reed for biobutanol production hydrolyzed by crude cellulase. Biomass Bioenergy. 2015;76:24–30. doi: 10.1016/j.biombioe.2015.02.013. DOI
Heitmann S., Krüger V., Welz D., Lutze P. Experimental investigation of pervaporation membranes for biobutanol separation. J. Membr. Sep. Technol. 2013;2:245–262.
Kumar M., Gayen K. Developments in biobutanol production: New insight. Appl. Energy. 2011;88:1999–2012. doi: 10.1016/j.apenergy.2010.12.055. DOI
Jadhav S., Harde S., Bankar S., Granström T., Ojamo H., Singhal R., Survase S. A green process for the production of butanol from butyraldehyde using alcohol dehydrogenase: Process details. Rsc Adv. 2014;4:14597–14602. doi: 10.1039/c3ra47821a. DOI
Dong H., Tao W., Dai Z., Yang L., Gong F., Zhang Y., Li Y. Advances in Biochemical Engineering/Biotechnology. Volume 128. Springer; Berlin/Heidelberg, Germany: 2011. Biobutanol; pp. 85–100. PubMed
Qureshi N., Liu S., Ezeji T. Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology. In: James W.L., editor. Advanced Biofuels and Bioproducts. Volume 15. Springer; New York, NY, USA: 2013. pp. 247–265.
Li X., Li Z., Zheng J., Shi Z., Li L. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour. Technol. 2012;125:43–51. doi: 10.1016/j.biortech.2012.08.056. PubMed DOI
Liu X., Gu Q., Liao C., Yu X. Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol–glycerol storage during long-term preservation. Biomass Bioenergy. 2014;69:192–197. doi: 10.1016/j.biombioe.2014.07.019. DOI
García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R. Challenges in biobutanol production: How to improve the efficiency. Renew. Sustain. Energy Rev. 2011;15:964–980. doi: 10.1016/j.rser.2010.11.008. DOI
Mariano A., Qureshi N., Filho R., Ezeji T. Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol. Bioeng. 2011;108:1757–1765. doi: 10.1002/bit.23123. PubMed DOI
Patakova P., Kolek J., Sedlar K., Koscova P., Branska B., Kupkova K., Paulova L., Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. 2018;36:721–738. doi: 10.1016/j.biotechadv.2017.12.004. PubMed DOI
Sharif A.R., Mehrani P., Thibault J. Comparison of in-situ recovery methods of gas stripping, pervaporation, and vacuum separation by multiobjective optimization for producing biobutanol via fermentation process. Can. J. Chem. Eng. 2015;93:986–997. doi: 10.1002/cjce.22186. DOI
Liu C., Wei W., Wu H., Dong X., Jiang M., Jin W. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J. Membr. Sci. 2011;373:121–129. doi: 10.1016/j.memsci.2011.02.042. DOI
Peng P., Shi B., Lan Y. A review of membrane materials for ethanol recovery by pervaporation. Sep. Sci. Technol. 2011;46:234–246. doi: 10.1080/01496395.2010.504681. DOI
Liu F., Liu L., Feng X. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purification Technol. 2005;42:273–282. doi: 10.1016/j.seppur.2004.08.005. DOI
Li S., Srivastava R., Parnas R. Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 2010;363:287–294. doi: 10.1016/j.memsci.2010.07.042. DOI
Azimi H., Tezel F., Thibault J. Effect of embedded activated carbon nanoparticles on the performance of polydimethylsiloxane (PDMS) membrane for pervaporation separation of butanol. J. Chem. Technol. Biotechnol. 2017;92:2901–2911. doi: 10.1002/jctb.5306. DOI
Hickey P.J., Juricic F.P., Slater C.S. The effect of process parameters on the pervaporation of alcohols through organophilic membranes. Sep. Sci. Technol. 1992;27:843–861. doi: 10.1080/01496399208019729. DOI
Schmidt C.L., Myers M.D., Kelley S.S., McMillan J.D., Paducone N. Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation. Appl. Biochem. Biotechnol. 1997;63:469–482. doi: 10.1007/BF02920447. PubMed DOI
Fadeev A.G., Selinskaya Y.A., Kelley S.S., Meagher M.M., Litvinova E.G., Khotimsky V.S., Volkov V.V. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne) J. Membr. Sci. 2001;186:205–217. doi: 10.1016/S0376-7388(00)00683-9. DOI
Fadeev A.G., Kelley S., McMillan J., Selinskaya Y., Khotimsky V., Volkov V.V. Effect of yeast fermentation by-products on poly[1-(trimethylsilyl)-1-propyne] pervaporative performance. J. Membr. Sci. 2003;214:229–238. doi: 10.1016/S0376-7388(02)00550-1. DOI
Pinnau I., Casillas C.G., Morisato A., Freeman B.D. Long-term permeation properties of poly(1-trimethylsilyl-1-propyne) membranes in hydrocarbon—Vapor environment. J. Polym. Sci. Part B: Polym. Phys. 1997;33:1483–1490. doi: 10.1002/(SICI)1099-0488(19970730)35:10<1483::AID-POLB2>3.0.CO;2-T. DOI
Fadeev A.G., Meagher M.M., Kelley S.S., Volkov V.V. Fouling of poly[-1-(trimethylsilyl)-1-propyne] membranes in pervaporative recovery of butanol from aqueous solutions and ABE fermentation broth. J. Membr. Sci. 2000;173:133–144. doi: 10.1016/S0376-7388(00)00359-8. DOI
Zhang G., Cheng H., Pengcheng S., Zhang X., Zheng J., Yinghua L., Qinglin L. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration. Sep. Purif. Technol. 2019;216:83–91. doi: 10.1016/j.seppur.2019.01.080. DOI
Žák M., Klepic M., Štastná L.Č., Sedláková Z., Vychodilová H., Hovorka Š., Friess K., Randová A., Brožová L., Jansen J.C., et al. Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging. Sep. Purif. Technol. 2015;151:108–114. doi: 10.1016/j.seppur.2015.07.041. DOI
Zhou H., Jin W. Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. Membranes. 2019;9:3. doi: 10.3390/membranes9010003. PubMed DOI PMC
Srinivasan R., Auvil S.R., Burban P.M. Elucidating the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes. J. Membr. Sci. 1994;86:67–86. doi: 10.1016/0376-7388(93)E0128-7. DOI
Lakshmanan L.W., Hopfenberg H., Chern R. Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne] J. Membr. Sci. 1990;48:321–331. doi: 10.1016/0376-7388(90)85013-B. DOI
Masuda T., Isobe E., Higashimura T. Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium(V) and tantalum(V) and polymer properties. Macromolecules. 1985;18:841–845. doi: 10.1021/ma00147a003. DOI
Hasegawa Y., Kimura K., Nemoto Y., Nagase T., Kiyozumi Y., Nishide T., Mizukami F. Real-time monitoring of permeation properties through polycrystalline MFI-type zeolite membranes during pervaporation using mass-spectrometry. Sep. Purif. Technol. 2008;58:386–392. doi: 10.1016/j.seppur.2007.05.014. DOI
Bowen T., Wyss J., Noble R., Falconer J. Measurement of diffusion through a zeolite membrane using isotopic-transient pervaporation. Microporous Mesoporous Mater. 2004;71:199–210. doi: 10.1016/j.micromeso.2004.03.032. DOI
Dudek G., Borys P. A Simple Methodology to Estimate the Diffusion Coefficient in Pervaporation-Based Purification Experiments. Polymers. 2019;11:343. doi: 10.3390/polym11020343. PubMed DOI PMC
Gotō A., Takahashi M., Kuwahara N., Kubota K. Numerical simulation of solvent diffusion for binary alcohol mixtures in polyacrylonitrile membrane. J. Membr. Sci. 1995;99:107–115. doi: 10.1016/0376-7388(94)00200-I. DOI
Schafer T., Vital J., Crespo J. Coupled pervaporation/mass spectrometry for investigating membrane mass transport phenomena. J. Membr. Sci. 2004;241:197–205. doi: 10.1016/j.memsci.2004.05.014. DOI
Oh K., Koo Y., Jung K. Characterization of a sheet membrane interface for sample introduction into a time-of-flight mass spectromete. Int. J. Mass Spectrom. 2006;253:65–70. doi: 10.1016/j.ijms.2006.02.017. DOI
Johnson R., Cooks R., Allen T., Cisper M., Hemberger P.H. Membrane introduction mass spectrometry: Trends and applications. Mass Spectrom. Rev. 2000;19:1–37. doi: 10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y. PubMed DOI
Shah M., Noble R., Clough D. Measurement of sorption and diffusion in nonporous membranes by transient permeation experiments. J. Membr. Sci. 2007;287:111–118. doi: 10.1016/j.memsci.2006.10.026. DOI
Vopicka O., Hynek V., Rabová V. Measuring the transient diffusion of vapor mixtures through dense membranes. J. Membr. Sci. 2010;350:217–225. doi: 10.1016/j.memsci.2009.12.031. DOI
Vopicka O., Radotínský D., Friess K. Sorption of vapor mixtures of methanol and dimethyl carbonate in PDMS: Experimental study. Eur. Polym. J. 2015;73:480–486. doi: 10.1016/j.eurpolymj.2015.11.005. DOI
Vopicka O., Hynek V., Zgažar M., Friess K., Šípek M. A new sorption model with a dynamic correction for the determination of diffusion coefficients. J. Membr. Sci. 2009;330:51–56. doi: 10.1016/j.memsci.2008.12.037. DOI
Design Institute for Physical Properties, Sponsored by AICHE (2005; 2008; 2009; 2010). Dippr Project 801—Full Version. Design Institute for Physical Property Research/AICHE. [(accessed on 12 August 2019)]; Available online: http://knovel.com/web/portal/browse/display?_ext_knovel_display_bookid=1187&verticalid=0.
Nagai K., Higuchi A., Nakagawa T. Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) membranes. J. Polym. Sci. Part B Polym. Phys. 1995;33:289–298. doi: 10.1002/polb.1995.090330214. DOI
Barker J.J., Treybal R.E. Mass transfer coefficients for solids suspended in agitated liquids. AIChE J. 1960;6:289–295. doi: 10.1002/aic.690060223. DOI
Vopicka O., Pilnácek K., Cíhal P., Friess K. Sorption of methanol, dimethyl carbonate, methyl acetate, and acetone vapors in CTA and PTMSP: General findings from the GAB Analysis. J. Polym. Sci. Part B Polym. Phys. 2015;54:561–569. doi: 10.1002/polb.23945. DOI
Radotínský D., Vopicka O., Hynek V., Izák P., Friess K. Aparatura Pro Stanovení Sorpce a Permeace Organických Par V Polymerech Pomocí InfraNoervené Spektroskopie. Chem. Listy. 2015;109:619–624. (In Czech)
Daynes H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. 1920;97:286–307. doi: 10.1098/rspa.1920.0034. DOI
Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press; London, UK: 1975. pp. 69–88.
Kappert E.J., Raaijmakers M.J., Tempelman K., Cuperus F.P., Ogieglo W., Benes N.E. Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. J. Membr. Sci. 2019;569:177–199. doi: 10.1016/j.memsci.2018.09.059. DOI
Cihal P., Vopicka O., Pilnacek K., Poustka J., Friess K., Hajšlová J., Dobiáš J., Dole P. Aroma scalping characteristics of polybutylene succinate based films. Polym. Test. 2015;46:108–115. doi: 10.1016/j.polymertesting.2015.07.006. DOI
Torra V., Tachoire H. Conduction Calorimeters Heat Transmission Systems with Uncertainties. J. Therm. Anal. Calorim. 1998;52:663–681. doi: 10.1023/A:1010181617076. DOI
LePage W. Complex Variables and the Laplace Transform for Engineers. Dover Publications, Inc.; New York, NY, USA: 1961.
Oberhettinger F., Badii L. Tables of Laplace Transforms. Springer; Berlin, Germany: 1973.
Baker R., Wijmans J., Huang Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI
Renon H., Prausnitz J. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–144. doi: 10.1002/aic.690140124. DOI
KoichiI W., Hitoshi K. A correlation method for isobaric vapor–liquid and vapor–liquid–liquid equilibria data of binary systems. Fluid Phase Equilibria. 2008;266:202–210.
Nakanishi K., Odani H., Kurata M., Masuda T., Higashimura T. Sorption of Alcohol Vapors in a Disubstituted Polyacetylene. Polym. J. 1987;19:293–296. doi: 10.1295/polymj.19.293. DOI
Tsarkov S., Khotimsky V., Budd P., Volkov V., Kukushkina J., Volkov A. Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature. J. Membr. Sci. 2012;423:65–72. doi: 10.1016/j.memsci.2012.07.026. DOI
Claes S., Vandezande P., Mullens S., van Bael M.K., Maurer F.H.J. Free volume expansion of Poly[1-(trimethylsilyl)-1-propyne] treated in supercritical carbon dioxide as revealed by positron annihilation lifetime spectroscopy. Macromolecules. 2011;44:2766–2772. doi: 10.1021/ma1029345. DOI
Masuda T., Takatsuka M., Tang B.-Z., Higashimura T. Pervaporation of organic liquid—Water mixtures through substituted polyacetylene membrane. J. Membr. Sci. 1990;49:69–83. doi: 10.1016/S0376-7388(00)80778-4. DOI
Dubreuil M., Vandezande P., van Hecke W., Porto-Carrero W., Dotremont C. Study on aging/fouling phenomena and the effect of upstream nanofiltration on in-situ product recovery of n-butanol through poly[1-(trimethylsilyl)-1-propyne] pervaporation membranes. J. Membr. Sci. 2013;447:134–143. doi: 10.1016/j.memsci.2013.07.032. DOI
Tuliakova T., Paschin A., Sedov V. Yeast extracts as safety sources of vitamins, mineral substances and amino acids. Food Ind. 2004;6:2–4. (In Russian)