Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane

. 2020 Mar 26 ; 10 (4) : . [epub] 20200326

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32224983

Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008351 European structure and investment funds, OP RDE-funded project Chemjets
18-08389S Grantová Agentura České Republiky

In this work, a poly(1-trimethylsilyl-1-propyne) (PTMSP) mixed-matrix membrane was fabricated for the selective removal of 1-butanol from aqueous solutions through pervaporation. Silica nanoparticles (SNPs), which were surface-modified with surfactant hexadecyltrimethylammonium bromide (CTAB), were incorporated into the structure of the membrane. The modified membrane was characterized by thermogravimetry-differential scanning calorimetry (TG-DSC), contact angle measurements, and scanning electron microscope (SEM) analysis. It was found that the surface hydrophobicity of the membrane was improved when compared to neat PTMSP by contact angle measurement. It was confirmed by SEM analysis that a uniform distribution of surface-modified SNPs throughout the PTMSP membrane was achieved. The thermogravimetric analysis detected the thermal degradation of the modified PTMSP at 370 °C, which is comparable to neat PTMSP. The pervaporation measurements showed a maximum separation factor of 126 at 63 °C for 1.5 w/w% 1-butanol in the feed. The maximum total flux of approximately 1.74 mg·cm-2·min-1 was observed with the highest inspected temperature of 63 °C and at the 1-butanol concentration in the feed 4.5 w/w%. The pervaporation transients showed that the addition of the surface-modified SNPs significantly enhanced the diffusivity of 1-butanol in the composite compared to the neat PTMSP membrane. This improvement was attributed to the influence of the well-dispersed SNPs in the PTMSP matrix, which introduced an additional path for diffusivity.

Zobrazit více v PubMed

Dürre P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007;2:1525–1534. doi: 10.1002/biot.200700168. PubMed DOI

Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 2008;10:209–228. doi: 10.1002/bit.22003. PubMed DOI

Green M.E. Fermentative production of butanol—The industrial perspective. Curr. Opin. Biotech. 2011;22:337–343. doi: 10.1016/j.copbio.2011.02.004. PubMed DOI

Jin C., Yao C., Liu H., Lee C.F., Ji J. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 2011;15:4080–4106. doi: 10.1016/j.rser.2011.06.001. DOI

Ibrahim M.F., Ramli N., Bahrin E.K., Abd-Aziz S. Cellulosic biobutanol by Clostridia: Challenges and improvements. Renew. Sustain. Energy Rev. 2017;79:1241–1254. doi: 10.1016/j.rser.2017.05.184. DOI

Pugazhendhi A., Mathimani T., Varjani S., Rene R.E., Kumar G., Kim S.-H., Ponnusamy V.K., Yoon J.-J. Biobutanol as a promising liquid fuel for the future—Recent updates and perspectives. Fuel. 2019;253:637–646. doi: 10.1016/j.fuel.2019.04.139. DOI

Singh S. Global N Butanol Market Analysis & Trends—Industry Forecast to 2027. Accuray Research LLP; Dublin, Ireland: 2018. Research and Markets.

Shao P., Huang R. Polymeric membrane pervaporation. J. Membr. Sci. 2007;287:162–179. doi: 10.1016/j.memsci.2006.10.043. DOI

Volkov A.V., Volkov V.V., Khotimskii V.S. Membranes based on poly[(1-trimethylsilyl)-1-propyne] for liquid-liquid separation. Polym. Sci. Ser. A. 2009;51:2113–2128. doi: 10.1134/S0965545X09110212. DOI

Nagai K., Masuda T., Nakagawa T., Freeman B.D., Pinnau I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001;26:721–798. doi: 10.1016/S0079-6700(01)00008-9. DOI

Khotimsky V.S., Tchirkova M.V., Litvinova E.G., Rebrov A.I., Bondarenko G.N. Poly[1-(trimethylgermyl)-1-propyne] and poly[1-(trimethylsilyl)-1-propyne] with various geometries: Their synthesis and properties. J. Polym. Sci. Part A Polym. Chem. 2003;41:2133–2155. doi: 10.1002/pola.10757. DOI

Volkov V.V., Fadeev A.G., Khotimsky V.S., Litvinova E.G., Selinskaya Y.A., McMillan J.D., Kelley S.S. Effects of synthesis conditions on the pervaporation properties of Poly[1-(Trimethylsilyl)-1-Propyne] useful for membrane bioreactors. J. Appl. Polym. Sci. 2004;91:2271–2277. doi: 10.1002/app.13358. DOI

Cheng X., Pan F., Wang M., Li W., Song Y., Liu G., Yang H., Gao B., Wu H., Jiang Z. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017;541:329–346. doi: 10.1016/j.memsci.2017.07.009. DOI

Zhang H., Li B., Sun D., Miao X., Gu Y. SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation. Desalination. 2018;429:33–43. doi: 10.1016/j.desal.2017.12.004. DOI

Heidari M., Hosseini S.S., Narsin M.O., Ghadimi A. Synthesis and fabrication of adsorptive carbon nanoparticles (ACNs)/PDMS mixed matrix membranes for efficient CO2/CH4 and C3H8/CH4 separation. Sep. Purif. Technol. 2019;209:503–515. doi: 10.1016/j.seppur.2018.07.055. DOI

Suhas D.P., Aminabhavi T.M., Raghu A.V. Para-toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of IPA. Appl. Clay Sci. 2014;101:419–429. doi: 10.1016/j.clay.2014.08.017. DOI

Sudhakar H.V., Prasad C., Sunitha K.C., Rao K., Subha M., Sridhar S. Pervaporation separation of IPA-water mixtures through 4A zeolite-filled sodium alginate membranes. J. Appl. Polym. Sci. 2011;121:2717–2725. doi: 10.1002/app.33695. DOI

Shirazi Y., Tofighy A.M., Mohammadi T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol. J. Membr. Sci. 2011;378:551–561. doi: 10.1016/j.memsci.2011.05.047. DOI

Bouša D., Friess K., Pilnáček K., Vopička O., Lanč M., Fónod K., Pumera M., Sedmidubský D., Luxa J., Sofer Z. Thin high flux self-standing graphene oxide membranes for efficient hydrogen separation from gas mixtures. Chem. Eur. J. 2017;23:11416–11422. doi: 10.1002/chem.201702233. PubMed DOI

Xu Y.M., Japip S., Chung T.S. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. J. Membr. Sci. 2018;549:217–226. doi: 10.1016/j.memsci.2017.12.001. DOI

Cheng Y., Ying Y., Zhai L., Liu G., Dong J., Wang Y., Christopher M.P., Long S., Wang Y., Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019;573:97–106. doi: 10.1016/j.memsci.2018.11.060. DOI

Casado-Coterillo C., Fernández-Barquín A., Irabien A. Effect of humidity on CO2/N2 and CO2/CH4 separation using novel robust mixed matrix composite hollow fiber membranes: Experimental and model evaluation. Membranes. 2020;10:6. doi: 10.3390/membranes10010006. PubMed DOI PMC

Claes R., Vandezande P., Mullens S., Sitter K.D., Peeters R., Van Bael M.K. Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J. Membr. Sci. 2012;389:265–271. doi: 10.1016/j.memsci.2011.10.035. DOI

Jyothi M.S., Reddy K.R., Soontarapa K., Naveen S., Raghu A.V., Kulkarni R.V., Suhas D.P., Shetti N.P., Nadagouda M.N., Aminabhavi T.M. Membranes for dehydration of alcohols via pervaporation. J. Environ. Manag. 2019;242:415–429. doi: 10.1016/j.jenvman.2019.04.043. PubMed DOI

Torabi B., Ameri E. Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem. Eng. J. 2016;288:461–472. doi: 10.1016/j.cej.2015.12.011. DOI

Talluri V.P., Patakova P., Moucha T., Vopicka O. Transient and steady pervaporation of 1-butanol–water mixtures through a poly[1 -(trimethylsilyl)-1-propyne] (ptmsp) membrane. Polymers. 2019;11:1943. doi: 10.3390/polym11121943. PubMed DOI PMC

Design Institute for Physical Properties, Sponsored by AICHE (2005; 2008; 2009; 2010) Dippr Project 801—Full Version. [(accessed on 11 November 2019)]; Design Institute for Physical Property Research/AICHE. Available online: http://knovel.com/web/toc.v/cid:kpDIPPRPF7/viewerType:toc/root_slug:dippr-project-801-full/url_slug:dippr-project-801-full/?

Nagai K., Higuchi A., Nakagawa T. Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1- phenyl-1-propyne) membranes. J. Polym. Sci. Part B Polym. Phys. 1995;33:289–298. doi: 10.1002/polb.1995.090330214. DOI

Vopicka O., Radotínský D., Friess K. Sorption of vapor mixtures of methanol and dimethyl carbonate in PDMS: Experimental study. Eur. Polym. J. 2015;73:480–486. doi: 10.1016/j.eurpolymj.2015.11.005. DOI

Radotínský D., Vopicka O., Hynek V., Izák P., Friess K. Aparatura pro stanovení sorpce a permeace organických par v polymerech pomocí infranoervené spektroskopie. Chem. Listy. 2015;109:619–624. (In Czech)

Baker R., Wijmans J., Huang Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI

Renon H., Prausnitz J. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–144. doi: 10.1002/aic.690140124. DOI

KoichiI W., Hitoshi K. A correlation method for isobaric vapor–liquid and vapor–liquid–liquid equilibria data of binary systems. Fluid Phase Equilibria. 2008;266:202–210.

Sitter K.D., Leysen R., Mullens S., Vankelecom I., Maurer F. Silica filled poly(1-trimethylsilyl-1-propyne) and poly(4-methyl-2-pentyne) membranes: Similarities and differences in structural characteristics and membrane performances. Desalination. 2006;199:293–295. doi: 10.1016/j.desal.2006.03.174. DOI

Feng X., Huang Y.M. Estimation of activation energy for permeation in pervaporation processes. J. Membr. Sci. 1996;118:127–131. doi: 10.1016/0376-7388(96)00096-8. DOI

Yakovlev A.V., Shalygin M.G., Matson S.M., Khotimskiy V.S., Teplyakov V.V. Separation of diluted butanol–water solutions via vapor phase by organophilic membranes based on high permeable polyacetylenes. J. Membr. Sci. 2013;434:99–105. doi: 10.1016/j.memsci.2013.01.061. DOI

Borisov I.L., Malakhov A.O., Khotimsky V.S., Litvinova E.G., Finkelshtein E.S., Ushakov N.V., Volkov V.V. Novel PTMSP-based membranes containing elastomeric fillers: Enhanced 1-butanol/water pervaporation selectivity and permeability. J. Membr. Sci. 2014;466:322–330. doi: 10.1016/j.memsci.2014.04.037. DOI

Fadeev A.G., Selinskaya Y.A., Kelley S.S., Meagher M.M., Litvinova E.G., Khotimsky V.S., Volkov V.V. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne) J. Membr. Sci. 2001;186:205–217. doi: 10.1016/S0376-7388(00)00683-9. DOI

Li S., Qin F., Qin P., Karim M.N., Tan T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chem. 2013;15:2180–2190. doi: 10.1039/c3gc40291f. DOI

Liu F., Liu L., Feng X. Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purif. Technol. 2005;42:273–282. doi: 10.1016/j.seppur.2004.08.005. DOI

Yen H.-W., Chen Z.-H., Yang I.K. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTS) in a pervaporation system incorporated with fermentation for butanol production by clostridium acetobutylicum. Bioresour. Technol. 2012;109:105–109. doi: 10.1016/j.biortech.2012.01.017. PubMed DOI

Huang J., Meagher M.M. Pervaporative recovery of n-butanol from aqueous solutions and abe fermentation broth using thin-film silicalite-filled silicone composite membranes. J. Membr. Sci. 2001;192:231–242. doi: 10.1016/S0376-7388(01)00507-5. DOI

Liu G., Hou D., Wei W., Xiangli F., Jin W. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane. Chin. J. Chem. Eng. 2011;19:40–44. doi: 10.1016/S1004-9541(09)60174-9. DOI

Golubev G.S., Borisov I.L., Volkov V.V., Volkov A.V. High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. Membr. Membr. Technol. 2020;2:45–53. doi: 10.1134/S2517751620010047. DOI

Ueno K., Yamada S., Watanabe T., Negishi H., Okuno T., Tawarayama H., Ishikawa S., Miyamoto M., Uemiya S., Oumi Y. Hydrophobic *BEA-Type Zeolite Membranes on Tubular Silica Supports for Alcohol/Water Separation by Pervaporation. Membranes. 2019;9:86. doi: 10.3390/membranes9070086. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...