Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008351
European structure and investment funds, OP RDE-funded project Chemjets
18-08389S
Grantová Agentura České Republiky
PubMed
32224983
PubMed Central
PMC7231369
DOI
10.3390/membranes10040055
PII: membranes10040055
Knihovny.cz E-zdroje
- Klíčová slova
- 1-butanol, PTMSP, Silica, pervaporation, water,
- Publikační typ
- časopisecké články MeSH
In this work, a poly(1-trimethylsilyl-1-propyne) (PTMSP) mixed-matrix membrane was fabricated for the selective removal of 1-butanol from aqueous solutions through pervaporation. Silica nanoparticles (SNPs), which were surface-modified with surfactant hexadecyltrimethylammonium bromide (CTAB), were incorporated into the structure of the membrane. The modified membrane was characterized by thermogravimetry-differential scanning calorimetry (TG-DSC), contact angle measurements, and scanning electron microscope (SEM) analysis. It was found that the surface hydrophobicity of the membrane was improved when compared to neat PTMSP by contact angle measurement. It was confirmed by SEM analysis that a uniform distribution of surface-modified SNPs throughout the PTMSP membrane was achieved. The thermogravimetric analysis detected the thermal degradation of the modified PTMSP at 370 °C, which is comparable to neat PTMSP. The pervaporation measurements showed a maximum separation factor of 126 at 63 °C for 1.5 w/w% 1-butanol in the feed. The maximum total flux of approximately 1.74 mg·cm-2·min-1 was observed with the highest inspected temperature of 63 °C and at the 1-butanol concentration in the feed 4.5 w/w%. The pervaporation transients showed that the addition of the surface-modified SNPs significantly enhanced the diffusivity of 1-butanol in the composite compared to the neat PTMSP membrane. This improvement was attributed to the influence of the well-dispersed SNPs in the PTMSP matrix, which introduced an additional path for diffusivity.
Zobrazit více v PubMed
Dürre P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007;2:1525–1534. doi: 10.1002/biot.200700168. PubMed DOI
Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 2008;10:209–228. doi: 10.1002/bit.22003. PubMed DOI
Green M.E. Fermentative production of butanol—The industrial perspective. Curr. Opin. Biotech. 2011;22:337–343. doi: 10.1016/j.copbio.2011.02.004. PubMed DOI
Jin C., Yao C., Liu H., Lee C.F., Ji J. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 2011;15:4080–4106. doi: 10.1016/j.rser.2011.06.001. DOI
Ibrahim M.F., Ramli N., Bahrin E.K., Abd-Aziz S. Cellulosic biobutanol by Clostridia: Challenges and improvements. Renew. Sustain. Energy Rev. 2017;79:1241–1254. doi: 10.1016/j.rser.2017.05.184. DOI
Pugazhendhi A., Mathimani T., Varjani S., Rene R.E., Kumar G., Kim S.-H., Ponnusamy V.K., Yoon J.-J. Biobutanol as a promising liquid fuel for the future—Recent updates and perspectives. Fuel. 2019;253:637–646. doi: 10.1016/j.fuel.2019.04.139. DOI
Singh S. Global N Butanol Market Analysis & Trends—Industry Forecast to 2027. Accuray Research LLP; Dublin, Ireland: 2018. Research and Markets.
Shao P., Huang R. Polymeric membrane pervaporation. J. Membr. Sci. 2007;287:162–179. doi: 10.1016/j.memsci.2006.10.043. DOI
Volkov A.V., Volkov V.V., Khotimskii V.S. Membranes based on poly[(1-trimethylsilyl)-1-propyne] for liquid-liquid separation. Polym. Sci. Ser. A. 2009;51:2113–2128. doi: 10.1134/S0965545X09110212. DOI
Nagai K., Masuda T., Nakagawa T., Freeman B.D., Pinnau I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001;26:721–798. doi: 10.1016/S0079-6700(01)00008-9. DOI
Khotimsky V.S., Tchirkova M.V., Litvinova E.G., Rebrov A.I., Bondarenko G.N. Poly[1-(trimethylgermyl)-1-propyne] and poly[1-(trimethylsilyl)-1-propyne] with various geometries: Their synthesis and properties. J. Polym. Sci. Part A Polym. Chem. 2003;41:2133–2155. doi: 10.1002/pola.10757. DOI
Volkov V.V., Fadeev A.G., Khotimsky V.S., Litvinova E.G., Selinskaya Y.A., McMillan J.D., Kelley S.S. Effects of synthesis conditions on the pervaporation properties of Poly[1-(Trimethylsilyl)-1-Propyne] useful for membrane bioreactors. J. Appl. Polym. Sci. 2004;91:2271–2277. doi: 10.1002/app.13358. DOI
Cheng X., Pan F., Wang M., Li W., Song Y., Liu G., Yang H., Gao B., Wu H., Jiang Z. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017;541:329–346. doi: 10.1016/j.memsci.2017.07.009. DOI
Zhang H., Li B., Sun D., Miao X., Gu Y. SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation. Desalination. 2018;429:33–43. doi: 10.1016/j.desal.2017.12.004. DOI
Heidari M., Hosseini S.S., Narsin M.O., Ghadimi A. Synthesis and fabrication of adsorptive carbon nanoparticles (ACNs)/PDMS mixed matrix membranes for efficient CO2/CH4 and C3H8/CH4 separation. Sep. Purif. Technol. 2019;209:503–515. doi: 10.1016/j.seppur.2018.07.055. DOI
Suhas D.P., Aminabhavi T.M., Raghu A.V. Para-toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of IPA. Appl. Clay Sci. 2014;101:419–429. doi: 10.1016/j.clay.2014.08.017. DOI
Sudhakar H.V., Prasad C., Sunitha K.C., Rao K., Subha M., Sridhar S. Pervaporation separation of IPA-water mixtures through 4A zeolite-filled sodium alginate membranes. J. Appl. Polym. Sci. 2011;121:2717–2725. doi: 10.1002/app.33695. DOI
Shirazi Y., Tofighy A.M., Mohammadi T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol. J. Membr. Sci. 2011;378:551–561. doi: 10.1016/j.memsci.2011.05.047. DOI
Bouša D., Friess K., Pilnáček K., Vopička O., Lanč M., Fónod K., Pumera M., Sedmidubský D., Luxa J., Sofer Z. Thin high flux self-standing graphene oxide membranes for efficient hydrogen separation from gas mixtures. Chem. Eur. J. 2017;23:11416–11422. doi: 10.1002/chem.201702233. PubMed DOI
Xu Y.M., Japip S., Chung T.S. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. J. Membr. Sci. 2018;549:217–226. doi: 10.1016/j.memsci.2017.12.001. DOI
Cheng Y., Ying Y., Zhai L., Liu G., Dong J., Wang Y., Christopher M.P., Long S., Wang Y., Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019;573:97–106. doi: 10.1016/j.memsci.2018.11.060. DOI
Casado-Coterillo C., Fernández-Barquín A., Irabien A. Effect of humidity on CO2/N2 and CO2/CH4 separation using novel robust mixed matrix composite hollow fiber membranes: Experimental and model evaluation. Membranes. 2020;10:6. doi: 10.3390/membranes10010006. PubMed DOI PMC
Claes R., Vandezande P., Mullens S., Sitter K.D., Peeters R., Van Bael M.K. Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J. Membr. Sci. 2012;389:265–271. doi: 10.1016/j.memsci.2011.10.035. DOI
Jyothi M.S., Reddy K.R., Soontarapa K., Naveen S., Raghu A.V., Kulkarni R.V., Suhas D.P., Shetti N.P., Nadagouda M.N., Aminabhavi T.M. Membranes for dehydration of alcohols via pervaporation. J. Environ. Manag. 2019;242:415–429. doi: 10.1016/j.jenvman.2019.04.043. PubMed DOI
Torabi B., Ameri E. Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem. Eng. J. 2016;288:461–472. doi: 10.1016/j.cej.2015.12.011. DOI
Talluri V.P., Patakova P., Moucha T., Vopicka O. Transient and steady pervaporation of 1-butanol–water mixtures through a poly[1 -(trimethylsilyl)-1-propyne] (ptmsp) membrane. Polymers. 2019;11:1943. doi: 10.3390/polym11121943. PubMed DOI PMC
Design Institute for Physical Properties, Sponsored by AICHE (2005; 2008; 2009; 2010) Dippr Project 801—Full Version. [(accessed on 11 November 2019)]; Design Institute for Physical Property Research/AICHE. Available online: http://knovel.com/web/toc.v/cid:kpDIPPRPF7/viewerType:toc/root_slug:dippr-project-801-full/url_slug:dippr-project-801-full/?
Nagai K., Higuchi A., Nakagawa T. Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1- phenyl-1-propyne) membranes. J. Polym. Sci. Part B Polym. Phys. 1995;33:289–298. doi: 10.1002/polb.1995.090330214. DOI
Vopicka O., Radotínský D., Friess K. Sorption of vapor mixtures of methanol and dimethyl carbonate in PDMS: Experimental study. Eur. Polym. J. 2015;73:480–486. doi: 10.1016/j.eurpolymj.2015.11.005. DOI
Radotínský D., Vopicka O., Hynek V., Izák P., Friess K. Aparatura pro stanovení sorpce a permeace organických par v polymerech pomocí infranoervené spektroskopie. Chem. Listy. 2015;109:619–624. (In Czech)
Baker R., Wijmans J., Huang Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI
Renon H., Prausnitz J. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–144. doi: 10.1002/aic.690140124. DOI
KoichiI W., Hitoshi K. A correlation method for isobaric vapor–liquid and vapor–liquid–liquid equilibria data of binary systems. Fluid Phase Equilibria. 2008;266:202–210.
Sitter K.D., Leysen R., Mullens S., Vankelecom I., Maurer F. Silica filled poly(1-trimethylsilyl-1-propyne) and poly(4-methyl-2-pentyne) membranes: Similarities and differences in structural characteristics and membrane performances. Desalination. 2006;199:293–295. doi: 10.1016/j.desal.2006.03.174. DOI
Feng X., Huang Y.M. Estimation of activation energy for permeation in pervaporation processes. J. Membr. Sci. 1996;118:127–131. doi: 10.1016/0376-7388(96)00096-8. DOI
Yakovlev A.V., Shalygin M.G., Matson S.M., Khotimskiy V.S., Teplyakov V.V. Separation of diluted butanol–water solutions via vapor phase by organophilic membranes based on high permeable polyacetylenes. J. Membr. Sci. 2013;434:99–105. doi: 10.1016/j.memsci.2013.01.061. DOI
Borisov I.L., Malakhov A.O., Khotimsky V.S., Litvinova E.G., Finkelshtein E.S., Ushakov N.V., Volkov V.V. Novel PTMSP-based membranes containing elastomeric fillers: Enhanced 1-butanol/water pervaporation selectivity and permeability. J. Membr. Sci. 2014;466:322–330. doi: 10.1016/j.memsci.2014.04.037. DOI
Fadeev A.G., Selinskaya Y.A., Kelley S.S., Meagher M.M., Litvinova E.G., Khotimsky V.S., Volkov V.V. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne) J. Membr. Sci. 2001;186:205–217. doi: 10.1016/S0376-7388(00)00683-9. DOI
Li S., Qin F., Qin P., Karim M.N., Tan T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chem. 2013;15:2180–2190. doi: 10.1039/c3gc40291f. DOI
Liu F., Liu L., Feng X. Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purif. Technol. 2005;42:273–282. doi: 10.1016/j.seppur.2004.08.005. DOI
Yen H.-W., Chen Z.-H., Yang I.K. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTS) in a pervaporation system incorporated with fermentation for butanol production by clostridium acetobutylicum. Bioresour. Technol. 2012;109:105–109. doi: 10.1016/j.biortech.2012.01.017. PubMed DOI
Huang J., Meagher M.M. Pervaporative recovery of n-butanol from aqueous solutions and abe fermentation broth using thin-film silicalite-filled silicone composite membranes. J. Membr. Sci. 2001;192:231–242. doi: 10.1016/S0376-7388(01)00507-5. DOI
Liu G., Hou D., Wei W., Xiangli F., Jin W. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane. Chin. J. Chem. Eng. 2011;19:40–44. doi: 10.1016/S1004-9541(09)60174-9. DOI
Golubev G.S., Borisov I.L., Volkov V.V., Volkov A.V. High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. Membr. Membr. Technol. 2020;2:45–53. doi: 10.1134/S2517751620010047. DOI
Ueno K., Yamada S., Watanabe T., Negishi H., Okuno T., Tawarayama H., Ishikawa S., Miyamoto M., Uemiya S., Oumi Y. Hydrophobic *BEA-Type Zeolite Membranes on Tubular Silica Supports for Alcohol/Water Separation by Pervaporation. Membranes. 2019;9:86. doi: 10.3390/membranes9070086. PubMed DOI PMC