Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn

. 2019 Nov 29 ; 10 (1) : 5459. [epub] 20191129

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31784509
Odkazy

PubMed 31784509
PubMed Central PMC6884521
DOI 10.1038/s41467-019-13391-z
PII: 10.1038/s41467-019-13391-z
Knihovny.cz E-zdroje

Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials-Mn3Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.

Zobrazit více v PubMed

Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI

Jungwirth T, et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018;14:200–203. doi: 10.1038/s41567-018-0063-6. DOI

Higo T, et al. Large magneto-optical kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics. 2018;12:73–78. doi: 10.1038/s41566-017-0086-z. PubMed DOI PMC

Ikhlas M, et al. Large anomalous nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017;13:1085–1090. doi: 10.1038/nphys4181. DOI

Nakatsuji S, Kiyohara N, Higo T. Large anomalous hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI

Nayak AK, et al. Large anomalous hall effect driven by a nonvanishing berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016;2:e1501870. doi: 10.1126/sciadv.1501870. PubMed DOI PMC

Suergers C, Fischer G, Winkel P, v. Löhneysen H. Large topological hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 2014;5:3400. doi: 10.1038/ncomms4400. PubMed DOI

Zhang W, et al. Spin hall effects in metallic antiferromagnets. Phys. Rev. Lett. 2014;113:196602. doi: 10.1103/PhysRevLett.113.196602. PubMed DOI

Kimata M, et al. Publisher correction: magnetic and magnetic inverse spin hall effects in a non-collinear antiferromagnet. Nature. 2019;566:E4–E4. doi: 10.1038/s41586-019-0907-y. PubMed DOI

Kuroda K, et al. Evidence for magnetic weyl fermions in a correlated metal. Nat. Mater. 2017;16:1090–1095. doi: 10.1038/nmat4987. PubMed DOI

Železný J, Zhang Y, Felser C, Yan B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 2017;119:187204. doi: 10.1103/PhysRevLett.119.187204. PubMed DOI

Gray, I. et al. Spin seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructure Phys. Rev. X 9, 041016 (2019).

Gray, I. et al. Imaging uncompensated moments and exchange-biased emergent ferromagnetism in ferh thin films. Preprint at https://arxiv.org/abs/1906.07243v1 (2019).

Weiler M, et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 2012;108:106602. doi: 10.1103/PhysRevLett.108.106602. PubMed DOI

Kuebler J, Felser C. Non-collinear antiferromagnets and the anomalous hall effect. EPL (Europhysics Letters) 2014;108:67001. doi: 10.1209/0295-5075/108/67001. DOI

Liu J, Balents L. Anomalous hall effect and topological defects in antiferromagnetic weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 2017;119:087202. doi: 10.1103/PhysRevLett.119.087202. PubMed DOI

Manna K, Sun Y, Muechler L, Kübler J, Felser C. Heusler, weyl and berry. Nat. Rev. Mater. 2018;3:244–256. doi: 10.1038/s41578-018-0036-5. DOI

Yang H, et al. Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 2017;19:015008. doi: 10.1088/1367-2630/aa5487. DOI

Li X, et al. Chiral domain walls of mn3sn and their memory. Nat. Commun. 2019;10:3021. doi: 10.1038/s41467-019-10815-8. PubMed DOI PMC

Tomiyoshi S, Yamaguchi Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 1982;51:2478–2486. doi: 10.1143/JPSJ.51.2478. DOI

Brown PJ, Nunez V, Tasset F, Forsyth JB, Radhakrishna P. Determination of the magnetic structure of mn3sn using generalized neutron polarization analysis. Journal of Physics: Condensed Matter. 1990;2:9409–9422.

Sticht J, Hoeck K-H, Kuebler J. Non-collinear itinerant magnetism: the case of Mn3Sn. J. Phys. Condens. Matter. 1989;1:8155–8176. doi: 10.1088/0953-8984/1/43/016. DOI

Sung NH, Ronning F, Thompson JD, Bauer ED. Magnetic phase dependence of the anomalous hall effect in Mn3Sn single crystals. Appl. Phys. Lett. 2018;112:132406. doi: 10.1063/1.5021133. DOI

Zhang D, et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=GA, Sn and Ge) heusler compounds. J. Phys. Condens. Matter. 2013;25:206006. doi: 10.1088/0953-8984/25/20/206006. PubMed DOI

Markou A, et al. Noncollinear antiferromagnetic Mn3Sn films. Phys. Rev. Mater. 2018;2:051001. doi: 10.1103/PhysRevMaterials.2.051001. DOI

Kleiner WH. Space-time symmetry of transport coefficients. Phys. Rev. 1966;142:318–326. doi: 10.1103/PhysRev.142.318. DOI

Smejkal, L., Rafael González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal hall effect in collinear antiferromagnets. Preprint at https://arxiv.org/abs/1901.00445 (2019). PubMed PMC

Guo G-Y, Wang T-C. Large anomalous nernst and spin nernst effects in the noncollinear antiferromagnets Mn3X (X=Sn,Ge,Ga) Phys. Rev. B. 2017;96:224415. doi: 10.1103/PhysRevB.96.224415. DOI

Higo T, et al. Anomalous hall effect in thin films of the weyl antiferromagnet Mn3Sn. Appl.Physi. Lett. 2018;113:202402. doi: 10.1063/1.5064697. DOI

You Y, et al. Anomalous hall effect-like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv. Electron. Mater. 2019;5:1800818. doi: 10.1002/aelm.201800818. DOI

Bisson WG, Wills AS. Anisotropy-driven spin glass transition in the kagome antiferromagnet hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. J. Phys. Condens. Matter. 2008;20:452204. doi: 10.1088/0953-8984/20/45/452204. DOI

Ritchey I, Chandra P, Coleman P. Spin folding in the two-dimensional heisenbergkagoméantiferromagnet. Phys. Rev. B. 1993;47:15342–15345. doi: 10.1103/PhysRevB.47.15342. PubMed DOI

Reichlova H, et al. Large anomalous nernst effect in thin films of the weyl semimetal Co2MnGa. Appl. Phys. Lett. 2018;113:212405. doi: 10.1063/1.5048690. DOI

Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320:190–194. doi: 10.1126/science.1145799. PubMed DOI

DuttaGupta S, et al. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics. 2015;12:333–336. doi: 10.1038/nphys3593. DOI

Gregg JF, et al. Giant magnetoresistive effects in a single element magnetic thin film. Phys. Rev. Lett. 1996;77:1580–1583. doi: 10.1103/PhysRevLett.77.1580. PubMed DOI

Mei, A. B. et al. Local photothermal control of phase transitions for on-demand room-temperature rewritable magnetic patterning. Preprint at https://arxiv.org/abs/1906.07239v1 (2019). PubMed

Singh U, Echtenkamp W, Street M, Binek C, Adenwalla S. Local writing of exchange biased domains in a heterostructure of co/pd pinned by magnetoelectric chromia. Adv. Funct. Mater. 2016;26:7470–7478. doi: 10.1002/adfm.201602466. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3

. 2025 Aug 02 ; 16 (1) : 7111. [epub] 20250802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...