Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31784509
PubMed Central
PMC6884521
DOI
10.1038/s41467-019-13391-z
PII: 10.1038/s41467-019-13391-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials-Mn3Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Hitachi Cambridge Laboratory Cambridge CB3 0HE UK
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straße 40 01187 Dresden Germany
School of Physics and Astronomy University of Nottingham NG7 2RD Nottingham UK
See more in PubMed
Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI
Jungwirth T, et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018;14:200–203. doi: 10.1038/s41567-018-0063-6. DOI
Higo T, et al. Large magneto-optical kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics. 2018;12:73–78. doi: 10.1038/s41566-017-0086-z. PubMed DOI PMC
Ikhlas M, et al. Large anomalous nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017;13:1085–1090. doi: 10.1038/nphys4181. DOI
Nakatsuji S, Kiyohara N, Higo T. Large anomalous hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI
Nayak AK, et al. Large anomalous hall effect driven by a nonvanishing berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016;2:e1501870. doi: 10.1126/sciadv.1501870. PubMed DOI PMC
Suergers C, Fischer G, Winkel P, v. Löhneysen H. Large topological hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 2014;5:3400. doi: 10.1038/ncomms4400. PubMed DOI
Zhang W, et al. Spin hall effects in metallic antiferromagnets. Phys. Rev. Lett. 2014;113:196602. doi: 10.1103/PhysRevLett.113.196602. PubMed DOI
Kimata M, et al. Publisher correction: magnetic and magnetic inverse spin hall effects in a non-collinear antiferromagnet. Nature. 2019;566:E4–E4. doi: 10.1038/s41586-019-0907-y. PubMed DOI
Kuroda K, et al. Evidence for magnetic weyl fermions in a correlated metal. Nat. Mater. 2017;16:1090–1095. doi: 10.1038/nmat4987. PubMed DOI
Železný J, Zhang Y, Felser C, Yan B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 2017;119:187204. doi: 10.1103/PhysRevLett.119.187204. PubMed DOI
Gray, I. et al. Spin seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructure Phys. Rev. X 9, 041016 (2019).
Gray, I. et al. Imaging uncompensated moments and exchange-biased emergent ferromagnetism in ferh thin films. Preprint at https://arxiv.org/abs/1906.07243v1 (2019).
Weiler M, et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 2012;108:106602. doi: 10.1103/PhysRevLett.108.106602. PubMed DOI
Kuebler J, Felser C. Non-collinear antiferromagnets and the anomalous hall effect. EPL (Europhysics Letters) 2014;108:67001. doi: 10.1209/0295-5075/108/67001. DOI
Liu J, Balents L. Anomalous hall effect and topological defects in antiferromagnetic weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 2017;119:087202. doi: 10.1103/PhysRevLett.119.087202. PubMed DOI
Manna K, Sun Y, Muechler L, Kübler J, Felser C. Heusler, weyl and berry. Nat. Rev. Mater. 2018;3:244–256. doi: 10.1038/s41578-018-0036-5. DOI
Yang H, et al. Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 2017;19:015008. doi: 10.1088/1367-2630/aa5487. DOI
Li X, et al. Chiral domain walls of mn3sn and their memory. Nat. Commun. 2019;10:3021. doi: 10.1038/s41467-019-10815-8. PubMed DOI PMC
Tomiyoshi S, Yamaguchi Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 1982;51:2478–2486. doi: 10.1143/JPSJ.51.2478. DOI
Brown PJ, Nunez V, Tasset F, Forsyth JB, Radhakrishna P. Determination of the magnetic structure of mn3sn using generalized neutron polarization analysis. Journal of Physics: Condensed Matter. 1990;2:9409–9422.
Sticht J, Hoeck K-H, Kuebler J. Non-collinear itinerant magnetism: the case of Mn3Sn. J. Phys. Condens. Matter. 1989;1:8155–8176. doi: 10.1088/0953-8984/1/43/016. DOI
Sung NH, Ronning F, Thompson JD, Bauer ED. Magnetic phase dependence of the anomalous hall effect in Mn3Sn single crystals. Appl. Phys. Lett. 2018;112:132406. doi: 10.1063/1.5021133. DOI
Zhang D, et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=GA, Sn and Ge) heusler compounds. J. Phys. Condens. Matter. 2013;25:206006. doi: 10.1088/0953-8984/25/20/206006. PubMed DOI
Markou A, et al. Noncollinear antiferromagnetic Mn3Sn films. Phys. Rev. Mater. 2018;2:051001. doi: 10.1103/PhysRevMaterials.2.051001. DOI
Kleiner WH. Space-time symmetry of transport coefficients. Phys. Rev. 1966;142:318–326. doi: 10.1103/PhysRev.142.318. DOI
Smejkal, L., Rafael González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal hall effect in collinear antiferromagnets. Preprint at https://arxiv.org/abs/1901.00445 (2019). PubMed PMC
Guo G-Y, Wang T-C. Large anomalous nernst and spin nernst effects in the noncollinear antiferromagnets Mn3X (X=Sn,Ge,Ga) Phys. Rev. B. 2017;96:224415. doi: 10.1103/PhysRevB.96.224415. DOI
Higo T, et al. Anomalous hall effect in thin films of the weyl antiferromagnet Mn3Sn. Appl.Physi. Lett. 2018;113:202402. doi: 10.1063/1.5064697. DOI
You Y, et al. Anomalous hall effect-like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv. Electron. Mater. 2019;5:1800818. doi: 10.1002/aelm.201800818. DOI
Bisson WG, Wills AS. Anisotropy-driven spin glass transition in the kagome antiferromagnet hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. J. Phys. Condens. Matter. 2008;20:452204. doi: 10.1088/0953-8984/20/45/452204. DOI
Ritchey I, Chandra P, Coleman P. Spin folding in the two-dimensional heisenbergkagoméantiferromagnet. Phys. Rev. B. 1993;47:15342–15345. doi: 10.1103/PhysRevB.47.15342. PubMed DOI
Reichlova H, et al. Large anomalous nernst effect in thin films of the weyl semimetal Co2MnGa. Appl. Phys. Lett. 2018;113:212405. doi: 10.1063/1.5048690. DOI
Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320:190–194. doi: 10.1126/science.1145799. PubMed DOI
DuttaGupta S, et al. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics. 2015;12:333–336. doi: 10.1038/nphys3593. DOI
Gregg JF, et al. Giant magnetoresistive effects in a single element magnetic thin film. Phys. Rev. Lett. 1996;77:1580–1583. doi: 10.1103/PhysRevLett.77.1580. PubMed DOI
Mei, A. B. et al. Local photothermal control of phase transitions for on-demand room-temperature rewritable magnetic patterning. Preprint at https://arxiv.org/abs/1906.07239v1 (2019). PubMed
Singh U, Echtenkamp W, Street M, Binek C, Adenwalla S. Local writing of exchange biased domains in a heterostructure of co/pd pinned by magnetoelectric chromia. Adv. Funct. Mater. 2016;26:7470–7478. doi: 10.1002/adfm.201602466. DOI
Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3