Feeding regime synchronizes circadian clock in choroid plexus - insight into a complex mechanism
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40548998
PubMed Central
PMC12185859
DOI
10.1007/s00018-025-05798-3
PII: 10.1007/s00018-025-05798-3
Knihovny.cz E-zdroje
- Klíčová slova
- Choroid plexus, Circadian clock, Glucose, Insulin, O-GlcNAc, Restricted feeding, Temperature,
- MeSH
- cirkadiánní hodiny * fyziologie genetika MeSH
- cirkadiánní proteiny Period metabolismus genetika MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- regulace genové exprese MeSH
- stravovací zvyklosti * fyziologie MeSH
- ventriculi laterales metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkadiánní proteiny Period MeSH
- Per2 protein, mouse MeSH Prohlížeč
The circadian clock in choroid plexus (ChP) controls processes involved in its physiological functions, but the signals that synchronize the clock have been sparsely studied. We found that the ChP clock in the fourthventricle (4V) is more robust than that in the lateral ventricle (LV) and investigated whether both clocks use information about mealtime as a signal to synchronize with the current activity state. Exposure of mPer2Luc mice to a 10-day reverse restricted feeding (rRF) protocol, in which food was provided for 6 h during daytime, advanced the phase of the ChP clock in 4V and LV, as evidenced by shifted (1) PER2-driven bioluminescence rhythms of ChP explants ex vivo and (2) daily profiles in clock gene expression in both ChP tissues in vivo. In contrast, clocks in other brain regions (DMH, ARC, LHb) of the same mice did not shift. The 4V ChP responded more strongly than the LV ChP to rRF by modulating the expression of genes to ensure a decrease in resistance to cerebrospinal fluid drainage and increase the secretory capacity of ChP cells. Mechanistically, rRF affects the ChP clock through food-induced increases in insulin, glucose and temperature levels, as in vitro all three signals significantly shifted the clocks in both ChP tissues, similar to rRF. The effect of glucose was partially blocked by OSMI-1, suggesting involvement of O-linked N-acetylglucosamine posttranslational modification. We identified mechanisms that can signal to the brain the time of feeding and the associated activity state via resetting of the ChP clock.
2nd Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
MacAulay N, Keep RF, Zeuthen T (2022) Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 19(1):26 PubMed DOI PMC
Marques F et al (2017) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 107:32–40 PubMed DOI
Segal MB (1993) Extracellular and cerebrospinal fluids. J Inherit Metab Dis 16(4):617–638 PubMed DOI
Ghersi-Egea JF et al (2018) Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 135(3):337–361 PubMed DOI
Quintela T et al (2018) The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiol Int 35(2):270–279 PubMed DOI
Myung J et al (2018) The choroid plexus is an important circadian clock component. Nat Commun 9(1):1062 PubMed DOI PMC
Yamaguchi T et al (2020) Characterization of the circadian oscillator in the choroid plexus of rats. Biochem Biophys Res Commun 524(2):497–501 PubMed DOI
Liska K et al (2021) Glucocorticoids reset circadian clock in choroid plexus via period genes. J Endocrinol 248(2):155–166 PubMed DOI
Takahashi JS et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775 PubMed DOI PMC
Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17(2):223–229 PubMed DOI
Sladek M et al (2024) The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus. Fluids Barriers Cns 21(1):46 PubMed DOI PMC
Damiola F et al (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961 PubMed DOI PMC
Feillet CA et al (2008) Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci 37(2):209–221 PubMed DOI
Abe M et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22(1):350–356 PubMed DOI PMC
Orozco-Solis R et al (2016) The circadian clock in the ventromedial hypothalamus controls cyclic energy expenditure. Cell Metab 23(3):467–478 PubMed DOI PMC
Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494 PubMed DOI
Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191(3):391–431 PubMed DOI
Verwey M et al (2007) Differential regulation of the expression of period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147(2):277–285 PubMed DOI
Verwey M et al (2008) Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats. Neurosci Lett 440(1):54–58 PubMed DOI
Verwey M, Lam GYM, Amir S (2009) Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats. Eur J Neurosci 29(11):2217–2222 PubMed DOI
Challet E (2019) The circadian regulation of food intake. Nat Rev Endocrinol 15(7):393–405 PubMed DOI
Fame RM et al (2023) Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 14(1):3720 PubMed DOI PMC
Houdek P, Sumova A (2014) In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS One 9(9):e107360 PubMed DOI PMC
Sladek M et al (2012) Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One 7(10):e46951 PubMed DOI PMC
Noguchi T et al (2020) Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude. Eur J Neurosci 51(12):2329–2342 PubMed DOI
Ralph MR et al (2021) Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice. PLoS Comput Biol 17(5):e1008987 PubMed DOI PMC
Szentirmai E et al (2010) Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 298(2):R467–R477 PubMed DOI PMC
Chavan R et al (2016) Liver-derived ketone bodies are necessary for food anticipation. Nat Commun 7:10580 PubMed DOI PMC
Kraly FS (1984) Physiology of drinking elicited by eating. Psychol Rev 91(4):478–490 PubMed DOI
Netsky MG, Shuangshoti S (2013) The choroid plexus in health and disease. Elsevier Science, Butterworth-Heinemann
Dani N et al (2021) A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184(11):3056–3074 ( PubMed DOI PMC
Mitsui S et al (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15(8):995–1006 PubMed DOI PMC
Ohno T, Onishi Y, Ishida N (2007) A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35(2):648–655 PubMed DOI PMC
Sato TK et al (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38(3):312–319 PubMed DOI PMC
Tong X et al (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 285(47):36401–36409 PubMed DOI PMC
Yoshitane H et al (2019) Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol 2(1):300 PubMed DOI PMC
Sladek M et al (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133(4):1240–1249 PubMed DOI
Polidarova L et al (2013) Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver. PLoS One 8(9):e75690 PubMed DOI PMC
Honzlová P et al (2022) Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks. Cell Mol Life Sci 79(6):318 PubMed DOI PMC
Sainsbury A, Cooney GJ, Herzog H (2002) Hypothalamic regulation of energy homeostasis. Best Pract Res Clin Endocrinol Metab 16(4):623–637 PubMed DOI
Timper K, Bruning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10(6):679–689 PubMed DOI PMC
Zhang Y et al (2011) Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 31(5):1873–1884 PubMed DOI PMC
Imoto D et al (2021) Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 54:101366 PubMed DOI PMC
Ip CK et al (2023) Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption. Neuron 111(16):2583–2600 ( PubMed DOI
Mieda M et al (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103(32):12150–12155 PubMed DOI PMC
Fuller PM, Lu J, Saper CB (2008) Differential rescue of light- and food-entrainable circadian rhythms. Science 320(5879):1074–1077 PubMed DOI PMC
Moriya T et al (2009) The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Eur J Neurosci 29(7):1447–1460 PubMed DOI
Angeles-Castellanos M, Mendoza J, Escobar C (2007) Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144(1):344–355 PubMed DOI
Lamont EW et al (2007) Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of period2 protein in the limbic forebrain. Neuroscience 144(2):402–411 PubMed DOI
Shimada A, Hasegawa-Ishii S (2021) Increased cytokine expression in the choroid plexus stroma and epithelium in response to endotoxin-induced systemic inflammation in mice. Toxicol Rep 8:520–528 PubMed DOI PMC
Jordan S et al (2019) Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178(5):1102–1114 ( PubMed DOI PMC
Lin Z et al (2022) CCL2: an important cytokine in normal and pathological pregnancies: a review. Front Immunol 13:1053457 PubMed DOI PMC
Alimajstorovic Z et al (2020) Cerebrospinal fluid dynamics modulation by diet and cytokines in rats. Fluids Barriers Cns 17(1):10 PubMed PMC
Chan CP, Kok KH, Jin DY (2011) CREB3 subfamily transcription factors are not created equal: Recent insights from global analyses and animal models. Cell Biosci 1(1):6 PubMed PMC
Van Cauter E et al (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88(3):934–942 PubMed DOI PMC
Mazucanti CH et al (2019) Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight 4(23):e131682 PubMed DOI PMC
Moskowitz MA et al (1979) Raphe origin of serotonin-containing neurons within choroid-plexus of the rat. Brain Res 169(3):590–594 PubMed DOI
Saeed R et al (2022) Behavioral, hormonal, and serotonergic responses to different restricted feeding schedules in rats. Int J Tryptophan Res 15:11786469221104728 PubMed DOI PMC
Crosby P et al (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177(4):896–909 ( PubMed DOI PMC
Uriarte M et al (2021) Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol Cell Endocrinol 538:111449 PubMed DOI
Di Spiezio A et al (2018) The LepR-mediated leptin transport across brain barriers controls food reward. Mol Metab 8:13–22 PubMed DOI PMC
Hirota T et al (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277(46):44244–44251 PubMed DOI
Lam C et al (2021) The hexosamine biosynthetic pathway and cancer: current knowledge and future therapeutic strategies. Cancer Lett 503:11–18 PubMed DOI
Cork GK, Thompson J, Slawson C (2018) Real talk: the inter-play between the mTOR, AMPK, and hexosamine biosynthetic pathways in cell signaling. Front Endocrinol (Lausanne) 9:522 PubMed DOI PMC
Kaasik K et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17(2):291–302 PubMed DOI PMC
Li MD et al (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17(2):303–310 PubMed DOI PMC
Ortiz-Meoz RF et al (2015) A small molecule that inhibits OGT activity in cells. ACS Chem Biol 10(6):1392–1397 PubMed DOI PMC
Li YH et al (2019) O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLoS Genet 15(1):e1007953 PubMed DOI PMC
Wang Y et al (2020) Nuclear localized O-fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of arabidopsis circadian clock. Mol Plant 13(3):446–458 PubMed DOI PMC
Hirano A, Fu YH, Ptácek LJ (2016) The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23(12):1053–1060 PubMed DOI
Moraes MN et al (2017) Melanopsin, a canonical light receptor, mediates thermal activation of clock genes. Sci Rep 7(1):13977 PubMed DOI PMC
Tamaru T et al (2011) Synchronization of circadian Per2 rhythms and HSF1-BMAL1: CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLoS One 6(9):e24521 PubMed DOI PMC
Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385 PubMed DOI PMC
Brown SA et al (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574–1583 PubMed DOI
Sladek M, Sumova A (2013) Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles. PLoS One 8(10):e77010 PubMed DOI PMC
Christensen J, Li C, Mychasiuk R (2022) Choroid plexus function in neurological homeostasis and disorders: the awakening of the circadian clocks and orexins. J Cereb Blood Flow Metab 42(7):1163–1175 PubMed DOI PMC