The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus

. 2024 May 27 ; 21 (1) : 46. [epub] 20240527

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38802875

Grantová podpora
110-2311-B038-003, 111-2314-B-038-008, 112-2314-B-038-063 National Science and Technology Council (NSTC), Taiwan
DP2-TMU-112-N-10 Higher Education Sprout Project of the Ministry of Education (MOE), Taiwan
21-09745S Grantová Agentura České Republiky

Odkazy

PubMed 38802875
PubMed Central PMC11131265
DOI 10.1186/s12987-024-00547-3
PII: 10.1186/s12987-024-00547-3
Knihovny.cz E-zdroje

Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.

Zobrazit více v PubMed

Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56(12):1695–716. doi: 10.1016/j.addr.2004.07.005. PubMed DOI

Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63. doi: 10.1016/0006-8993(85)91383-6. PubMed DOI

Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–92. doi: 10.1152/physrev.00004.2013. PubMed DOI

Speake T, Whitwell C, Kajita H, Majid A, Brown PD. Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech. 2001;52(1):49–59. doi: 10.1002/1097-0029(20010101)52:1<49::AID-JEMT7>3.0.CO;2-C. PubMed DOI

Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA. Cerebrospinal fluid production by the choroid plexus and brain. Science. 1971;173(3994):330–2. doi: 10.1126/science.173.3994.330. PubMed DOI

Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135(3):337–61. doi: 10.1007/s00401-018-1807-1. PubMed DOI

Bitanihirwe BKY, Lizano P, Woo TW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry. 2022;27(9):3573–82. doi: 10.1038/s41380-022-01623-6. PubMed DOI PMC

Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(1):7–22. doi: 10.1002/embj.201386609. PubMed DOI PMC

Bergen AA, Kaing S, ten Brink JB, Netherlands Brain B, Gorgels TG, Janssen SF. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics. 2015;16:956. doi: 10.1186/s12864-015-2159-z. PubMed DOI PMC

Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–15. doi: 10.1126/science.aah4967. PubMed DOI PMC

Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. doi: 10.1038/nrg.2016.150. PubMed DOI PMC

Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67–84. doi: 10.1038/s41580-019-0179-2. PubMed DOI

Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20(4):227–41. doi: 10.1038/s41580-018-0096-9. PubMed DOI

Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453–69. doi: 10.1038/s41583-018-0026-z. PubMed DOI

Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77. doi: 10.1146/annurev-physiol-021909-135919. PubMed DOI PMC

Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8. doi: 10.1126/science.2305266. PubMed DOI

Begemann K, Neumann AM, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf). 2020:e13446. PubMed

Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, et al. The choroid plexus is an important circadian clock component. Nat Commun. 2018;9(1):1062. doi: 10.1038/s41467-018-03507-2. PubMed DOI PMC

Quintela T, Furtado A, Duarte AC, Goncalves I, Myung J, Santos CRA. The role of circadian rhythm in choroid plexus functions. Prog Neurobiol. 2021;205:102129. doi: 10.1016/j.pneurobio.2021.102129. PubMed DOI

Yamaguchi T, Hamada T, Matsuzaki T, Iijima N. Characterization of the circadian oscillator in the choroid plexus of rats. Biochem Biophys Res Commun. 2020;524(2):497–501. doi: 10.1016/j.bbrc.2020.01.125. PubMed DOI

Liska K, Sladek M, Cecmanova V, Sumova A. Glucocorticoids reset circadian clock in choroid plexus via period genes. J Endocrinol. 2021;248(2):155–66. doi: 10.1530/JOE-20-0526. PubMed DOI

Liska K, Dockal T, Houdek P, Sladek M, Luzna V, Semenovykh K, et al. Lithium affects the circadian clock in the choroid plexus - a new role for an old mechanism. Biomed Pharmacother. 2023;159:114292. doi: 10.1016/j.biopha.2023.114292. PubMed DOI

Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 1992;262(1 Pt 2):R20–4. PubMed

Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):4411. doi: 10.1038/s41467-020-18115-2. PubMed DOI PMC

Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018;9(1):2167. doi: 10.1038/s41467-018-04677-9. PubMed DOI PMC

Quintela T, Marcelino H, Deery MJ, Feret R, Howard J, Lilley KS et al. Sex-related differences in Rat Choroid Plexus and Cerebrospinal Fluid: a cDNA microarray and proteomic analysis. J Neuroendocrinol. 2016;28(1). PubMed

Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, et al. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. 2009;29(5):921–32. doi: 10.1038/jcbfm.2009.15. PubMed DOI

Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, et al. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics. 2013;14:147. doi: 10.1186/1471-2164-14-147. PubMed DOI PMC

Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the Choroid Plexus regulate adult neural stem cells. Cell Stem Cell. 2016;19(5):643–52. doi: 10.1016/j.stem.2016.06.013. PubMed DOI

Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci. 2015;35(12):4903–16. doi: 10.1523/JNEUROSCI.3081-14.2015. PubMed DOI PMC

Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–e7421. doi: 10.1016/j.cell.2021.04.003. PubMed DOI PMC

Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, et al. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun. 2023;14(1):3720. doi: 10.1038/s41467-023-39326-3. PubMed DOI PMC

Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46. doi: 10.1073/pnas.0308709101. PubMed DOI PMC

Muthusamy N, Vijayakumar A, Cheng G, Jr, Ghashghaei HT. A knock-in Foxj1(CreERT2::GFP) mouse for recombination in epithelial cells with motile cilia. Genesis. 2014;52(4):350–8. doi: 10.1002/dvg.22753. PubMed DOI PMC

Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130(4):730–41. doi: 10.1016/j.cell.2007.06.045. PubMed DOI PMC

Greiner P, Houdek P, Sladek M, Sumova A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol. 2022;20(5):e3001637. doi: 10.1371/journal.pbio.3001637. PubMed DOI PMC

Refinetti R. Non-stationary time series and the robustness of circadian rhythms. J Theor Biol. 2004;227(4):571–81. doi: 10.1016/j.jtbi.2003.11.032. PubMed DOI

Schmid B, Helfrich-Forster C, Yoshii T. A new ImageJ plug-in ActogramJ for chronobiological analyses. J Biol Rhythms. 2011;26(5):464–7. doi: 10.1177/0748730411414264. PubMed DOI

Teichman G, Cohen D, Ganon O, Dunsky N, Shani S, Gingold H, et al. RNAlysis: analyze your RNA sequencing data without writing a single line of code. BMC Biol. 2023;21(1):74. doi: 10.1186/s12915-023-01574-6. PubMed DOI PMC

Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and limitations of period estimation methods for circadian data. PLoS ONE. 2014;9(5):e96462. doi: 10.1371/journal.pone.0096462. PubMed DOI PMC

BioDare2. https://biodare2.ed.ac.uk/. Accessed May 5 2023.

Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25(5):372–80. doi: 10.1177/0748730410379711. PubMed DOI PMC

Yang R, Su Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics. 2010;26(12):i168–74. doi: 10.1093/bioinformatics/btq189. PubMed DOI PMC

Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. What time is it? Deep learning approaches for circadian rhythms. Bioinformatics. 2016;32(12):i8–17. doi: 10.1093/bioinformatics/btw243. PubMed DOI PMC

BIO_CYCLE Portal. http://circadiomics.igb.uci.edu/biocycle. Accessed May 4 2023.

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7. doi: 10.1093/nar/gkx356. PubMed DOI PMC

Abel JH. Accessed October 9. GitHub Repository Per2Py. https://github.com/johnabel/per2py. 2019.

Olney KC, Todd KT, Pallegar PN, Jensen TD, Cadiz MP, Gibson KA, et al. Widespread choroid plexus contamination in sampling and profiling of brain tissue. Mol Psychiatry. 2022;27(3):1839–47. doi: 10.1038/s41380-021-01416-3. PubMed DOI PMC

Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002;277(30):26934–43. doi: 10.1074/jbc.M203803200. PubMed DOI

Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun. 2019;10(1):947. doi: 10.1038/s41467-019-08591-6. PubMed DOI PMC

Szewczyk B, Gunther R, Japtok J, Frech MJ, Naumann M, Lee HO, et al. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep. 2023;42(2):112025. doi: 10.1016/j.celrep.2023.112025. PubMed DOI

Farg MA, Soo KY, Walker AK, Pham H, Orian J, Horne MK, et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging. 2012;33(12):2855–68. doi: 10.1016/j.neurobiolaging.2012.02.009. PubMed DOI

Davy BE, Robinson ML. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet. 2003;12(10):1163–70. doi: 10.1093/hmg/ddg122. PubMed DOI

Ruggeri G, Timms AE, Cheng C, Weiss A, Kollros P, Chapman T, et al. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A. 2018;176(3):676–81. doi: 10.1002/ajmg.a.38592. PubMed DOI PMC

Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. doi: 10.1152/physrev.00025.2013. PubMed DOI PMC

Roepke TK, Kanda VA, Purtell K, King EC, Lerner DJ, Abbott GW. KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. FASEB J. 2011;25(12):4264–73. doi: 10.1096/fj.11-187609. PubMed DOI PMC

Myung J, Wu D, Simonneaux V, Lane TJ. Strong circadian rhythms in the Choroid Plexus: implications for Sleep-Independent Brain Metabolite Clearance. J Exp Neurosci. 2018;12:1179069518783762. doi: 10.1177/1179069518783762. PubMed DOI PMC

Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch KF, et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 2021;35(5–6):329–34. doi: 10.1101/gad.346460.120. PubMed DOI PMC

Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013;119:283–323. doi: 10.1016/B978-0-12-396971-2.00010-5. PubMed DOI

Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A. 1998;95(11):6097–102. doi: 10.1073/pnas.95.11.6097. PubMed DOI PMC

Sumova A, Jac M, Sladek M, Sauman I, Illnerova H. Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. J Biol Rhythms. 2003;18(2):134–44. doi: 10.1177/0748730403251801. PubMed DOI

Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. doi: 10.1016/S0092-8674(00)81014-4. PubMed DOI

Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 2004;5:18. doi: 10.1186/1471-2199-5-18. PubMed DOI PMC

Sladek M, Rybova M, Jindrakova Z, Zemanova Z, Polidarova L, Mrnka L, et al. Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology. 2007;133(4):1240–9. doi: 10.1053/j.gastro.2007.05.053. PubMed DOI

Collins EJ, Cervantes-Silva MP, Timmons GA, O’Siorain JR, Curtis AM, Hurley JM. Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. 2021;31(2):171–85. doi: 10.1101/gr.263814.120. PubMed DOI PMC

Samad M, Agostinelli F, Sato T, Shimaji K, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 2022;50(W1):W183–90. doi: 10.1093/nar/gkac419. PubMed DOI PMC

Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41(D1):D1009–13. doi: 10.1093/nar/gks1161. PubMed DOI PMC

Matsumura R, Yoshimi K, Sawai Y, Yasumune N, Kajihara K, Maejima T, et al. The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation. Cell Rep. 2022;39(3):110703. doi: 10.1016/j.celrep.2022.110703. PubMed DOI

Edwards MD, Brancaccio M, Chesham JE, Maywood ES, Hastings MH. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Proc Natl Acad Sci U S A. 2016;113(10):2732–7. doi: 10.1073/pnas.1519044113. PubMed DOI PMC

Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37(2):187–92. doi: 10.1038/ng1504. PubMed DOI

Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell. 2009;36(3):417–30. doi: 10.1016/j.molcel.2009.10.012. PubMed DOI PMC

Fan Y, Hida A, Anderson DA, Izumo M, Johnson CH. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol. 2007;17(13):1091–100. doi: 10.1016/j.cub.2007.05.048. PubMed DOI PMC

Bering T, Blancas-Velazquez AS, Rath MF. Circadian clock genes are regulated by rhythmic corticosterone at physiological levels in the Rat Hippocampus. Neuroendocrinology. 2023;113(10):1076–90. doi: 10.1159/000533151. PubMed DOI PMC

Edelbo BL, Andreassen SN, Steffensen AB, MacAulay N. Day-night fluctuations in choroid plexus transcriptomics and cerebrospinal fluid metabolomics. PNAS Nexus. 2023;2(8):pgad262. doi: 10.1093/pnasnexus/pgad262. PubMed DOI PMC

Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. doi: 10.1146/annurev.biochem.73.011303.074134. PubMed DOI

Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J. 2022;41(6):e109845. doi: 10.15252/embj.2021109845. PubMed DOI PMC

Nadanaka S, Yoshida H, Kano F, Murata M, Mori K. Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol Biol Cell. 2004;15(6):2537–48. doi: 10.1091/mbc.e03-09-0693. PubMed DOI PMC

Pan Z, Bao Y, Hu M, Zhu Y, Tan C, Fan L, et al. Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discov. 2023;9(1):56. doi: 10.1038/s41420-023-01355-8. PubMed DOI PMC

Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70. doi: 10.1016/j.bbamcr.2013.06.028. PubMed DOI PMC

Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929–37. doi: 10.1016/S0092-8674(00)81199-X. PubMed DOI

Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288(5466):682–5. doi: 10.1126/science.288.5466.682. PubMed DOI

Liska K, Sladek M, Houdek P, Shrestha N, Luzna V, Ralph MR, et al. High sensitivity of circadian clock in the hippocampal dentate gyrus to glucocorticoid- and GSK3beta-dependent signals. Neuroendocrinology. 2021;112:384–98. doi: 10.1159/000517689. PubMed DOI

Finger AM, Jaschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H et al. Intercellular coupling between peripheral circadian oscillators by TGF-beta signaling. Sci Adv. 2021;7(30). PubMed PMC

Nilsson C, Stahlberg F, Gideon P, Thomsen C, Henriksen O. The nocturnal increase in human cerebrospinal fluid production is inhibited by a beta 1-receptor antagonist. Am J Physiol. 1994;267(6 Pt 2):R1445–8. PubMed

Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):957–70. doi: 10.1016/j.neuroscience.2004.07.003. PubMed DOI PMC

Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD, Wakefield MJ, Lindsay H, et al. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci. 2015;9:123. doi: 10.3389/fnins.2015.00123. PubMed DOI PMC

Delezie J, Dumont S, Dardente H, Oudart H, Grechez-Cassiau A, Klosen P, et al. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26(8):3321–35. doi: 10.1096/fj.12-208751. PubMed DOI

Solar P, Zamani A, Kubickova L, Dubovy P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35. doi: 10.1186/s12987-020-00196-2. PubMed DOI PMC

Wang C, Lutes LK, Barnoud C, Scheiermann C. The circadian immune system. Sci Immunol. 2022;7(72):eabm2465. doi: 10.1126/sciimmunol.abm2465. PubMed DOI

Cermakian N, Stegeman SK, Tekade K, Labrecque N. Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol. 2022;44(2):193–207. doi: 10.1007/s00281-021-00903-7. PubMed DOI

Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci U S A. 2012;109(37):E2457–65. doi: 10.1073/pnas.1206274109. PubMed DOI PMC

Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. doi: 10.1126/scitranslmed.3003748. PubMed DOI PMC

Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, et al. Nephron-specific deletion of Circadian Clock Gene Bmal1 alters the plasma and renal metabolome and impairs Drug Disposition. J Am Soc Nephrol. 2016;27(10):2997–3004. doi: 10.1681/ASN.2015091055. PubMed DOI PMC

Matsumura H, Honda K, Choi WS, Inoue S, Sakai T, Hayaishi O. Evidence that brain prostaglandin E2 is involved in physiological sleep-wake regulation in rats. Proc Natl Acad Sci U S A. 1989;86(14):5666–9. doi: 10.1073/pnas.86.14.5666. PubMed DOI PMC

Huang ZL, Urade Y, Hayaishi O. Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol. 2007;7(1):33–8. doi: 10.1016/j.coph.2006.09.004. PubMed DOI

Marguet F, Vezain M, Marcorelles P, Audebert-Bellanger S, Cassinari K, Drouot N, et al. Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants. Acta Neuropathol Commun. 2021;9(1):104. doi: 10.1186/s40478-021-01207-5. PubMed DOI PMC

Miners J, van Hulle C, Ince S, Jonaitis E, Okonkwo OC, Bendlin B et al. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer’s disease. Res Sq. 2023. PubMed PMC

Sotak M, Sumova A, Pacha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46(4):221–32. doi: 10.3109/07853890.2014.892296. PubMed DOI

Fuchs L, Mausner-Fainberg K, Luban A, Asseyer SE, Golan M, Benhamou M, et al. CTGF/CCN2 has a possible detrimental role in the inflammation and the remyelination failure in the early stages of multiple sclerosis. J Neuroimmunol. 2022;371:577936. doi: 10.1016/j.jneuroim.2022.577936. PubMed DOI

Stopa EG, Tanis KQ, Miller MC, Nikonova EV, Podtelezhnikov AA, Finney EM, et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS. 2018;15(1):18. doi: 10.1186/s12987-018-0102-9. PubMed DOI PMC

Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS. 2018;15(1):34. doi: 10.1186/s12987-018-0120-7. PubMed DOI PMC

Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A. 2016;113(19):E2705–13. doi: 10.1073/pnas.1604032113. PubMed DOI PMC

Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. doi: 10.1038/nrneurol.2012.263. PubMed DOI PMC

Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30. doi: 10.1038/gim.2015.117. PubMed DOI PMC

Cheifetz PN. The daily rhythm of the secretion of corticotrophin and corticosterone in rats and mice. J Endocrinol. 1971;49(3):xi–xii. PubMed

Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2005;2(5):297–307. doi: 10.1016/j.cmet.2005.09.009. PubMed DOI

Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73. doi: 10.1016/j.cmet.2006.07.002. PubMed DOI

Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–7. doi: 10.1126/science.289.5488.2344. PubMed DOI

Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology. 2007;45(6):1478–88. doi: 10.1002/hep.21571. PubMed DOI

Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, et al. Guidelines for genome-scale analysis of Biological rhythms. J Biol Rhythms. 2017;32(5):380–93. doi: 10.1177/0748730417728663. PubMed DOI PMC

Drapsin M, Dockal T, Houdek P, Sladek M, Semenovykh K, Sumova A. Circadian clock in choroid plexus is resistant to immune challenge but dampens in response to chronodisruption. Brain Behav Immun. 2024;117:255–69. doi: 10.1016/j.bbi.2024.01.217. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...