The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
110-2311-B038-003, 111-2314-B-038-008, 112-2314-B-038-063
National Science and Technology Council (NSTC), Taiwan
DP2-TMU-112-N-10
Higher Education Sprout Project of the Ministry of Education (MOE), Taiwan
21-09745S
Grantová Agentura České Republiky
PubMed
38802875
PubMed Central
PMC11131265
DOI
10.1186/s12987-024-00547-3
PII: 10.1186/s12987-024-00547-3
Knihovny.cz E-zdroje
- Klíčová slova
- mPer2 Luc mouse, Choroid plexus, Circadian clock, Circadian transcriptome, Glucocorticoid, Mouse, Suprachiasmatic nuclei,
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus fyziologie MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- transkripční faktory ARNTL metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Bmal1 protein, mouse MeSH Prohlížeč
- transkripční faktory ARNTL MeSH
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
Brain and Consciousness Research Centre TMU Shuang Ho Hospital New Taipei City Taiwan
Graduate Institute of Mind Brain and Consciousness Taipei Medical University Taipei Taiwan
Zobrazit více v PubMed
Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56(12):1695–716. doi: 10.1016/j.addr.2004.07.005. PubMed DOI
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63. doi: 10.1016/0006-8993(85)91383-6. PubMed DOI
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–92. doi: 10.1152/physrev.00004.2013. PubMed DOI
Speake T, Whitwell C, Kajita H, Majid A, Brown PD. Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech. 2001;52(1):49–59. doi: 10.1002/1097-0029(20010101)52:1<49::AID-JEMT7>3.0.CO;2-C. PubMed DOI
Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA. Cerebrospinal fluid production by the choroid plexus and brain. Science. 1971;173(3994):330–2. doi: 10.1126/science.173.3994.330. PubMed DOI
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135(3):337–61. doi: 10.1007/s00401-018-1807-1. PubMed DOI
Bitanihirwe BKY, Lizano P, Woo TW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry. 2022;27(9):3573–82. doi: 10.1038/s41380-022-01623-6. PubMed DOI PMC
Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(1):7–22. doi: 10.1002/embj.201386609. PubMed DOI PMC
Bergen AA, Kaing S, ten Brink JB, Netherlands Brain B, Gorgels TG, Janssen SF. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics. 2015;16:956. doi: 10.1186/s12864-015-2159-z. PubMed DOI PMC
Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–15. doi: 10.1126/science.aah4967. PubMed DOI PMC
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. doi: 10.1038/nrg.2016.150. PubMed DOI PMC
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67–84. doi: 10.1038/s41580-019-0179-2. PubMed DOI
Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20(4):227–41. doi: 10.1038/s41580-018-0096-9. PubMed DOI
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453–69. doi: 10.1038/s41583-018-0026-z. PubMed DOI
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77. doi: 10.1146/annurev-physiol-021909-135919. PubMed DOI PMC
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8. doi: 10.1126/science.2305266. PubMed DOI
Begemann K, Neumann AM, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf). 2020:e13446. PubMed
Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, et al. The choroid plexus is an important circadian clock component. Nat Commun. 2018;9(1):1062. doi: 10.1038/s41467-018-03507-2. PubMed DOI PMC
Quintela T, Furtado A, Duarte AC, Goncalves I, Myung J, Santos CRA. The role of circadian rhythm in choroid plexus functions. Prog Neurobiol. 2021;205:102129. doi: 10.1016/j.pneurobio.2021.102129. PubMed DOI
Yamaguchi T, Hamada T, Matsuzaki T, Iijima N. Characterization of the circadian oscillator in the choroid plexus of rats. Biochem Biophys Res Commun. 2020;524(2):497–501. doi: 10.1016/j.bbrc.2020.01.125. PubMed DOI
Liska K, Sladek M, Cecmanova V, Sumova A. Glucocorticoids reset circadian clock in choroid plexus via period genes. J Endocrinol. 2021;248(2):155–66. doi: 10.1530/JOE-20-0526. PubMed DOI
Liska K, Dockal T, Houdek P, Sladek M, Luzna V, Semenovykh K, et al. Lithium affects the circadian clock in the choroid plexus - a new role for an old mechanism. Biomed Pharmacother. 2023;159:114292. doi: 10.1016/j.biopha.2023.114292. PubMed DOI
Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 1992;262(1 Pt 2):R20–4. PubMed
Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):4411. doi: 10.1038/s41467-020-18115-2. PubMed DOI PMC
Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018;9(1):2167. doi: 10.1038/s41467-018-04677-9. PubMed DOI PMC
Quintela T, Marcelino H, Deery MJ, Feret R, Howard J, Lilley KS et al. Sex-related differences in Rat Choroid Plexus and Cerebrospinal Fluid: a cDNA microarray and proteomic analysis. J Neuroendocrinol. 2016;28(1). PubMed
Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, et al. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. 2009;29(5):921–32. doi: 10.1038/jcbfm.2009.15. PubMed DOI
Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, et al. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics. 2013;14:147. doi: 10.1186/1471-2164-14-147. PubMed DOI PMC
Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the Choroid Plexus regulate adult neural stem cells. Cell Stem Cell. 2016;19(5):643–52. doi: 10.1016/j.stem.2016.06.013. PubMed DOI
Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci. 2015;35(12):4903–16. doi: 10.1523/JNEUROSCI.3081-14.2015. PubMed DOI PMC
Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–e7421. doi: 10.1016/j.cell.2021.04.003. PubMed DOI PMC
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, et al. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun. 2023;14(1):3720. doi: 10.1038/s41467-023-39326-3. PubMed DOI PMC
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46. doi: 10.1073/pnas.0308709101. PubMed DOI PMC
Muthusamy N, Vijayakumar A, Cheng G, Jr, Ghashghaei HT. A knock-in Foxj1(CreERT2::GFP) mouse for recombination in epithelial cells with motile cilia. Genesis. 2014;52(4):350–8. doi: 10.1002/dvg.22753. PubMed DOI PMC
Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130(4):730–41. doi: 10.1016/j.cell.2007.06.045. PubMed DOI PMC
Greiner P, Houdek P, Sladek M, Sumova A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol. 2022;20(5):e3001637. doi: 10.1371/journal.pbio.3001637. PubMed DOI PMC
Refinetti R. Non-stationary time series and the robustness of circadian rhythms. J Theor Biol. 2004;227(4):571–81. doi: 10.1016/j.jtbi.2003.11.032. PubMed DOI
Schmid B, Helfrich-Forster C, Yoshii T. A new ImageJ plug-in ActogramJ for chronobiological analyses. J Biol Rhythms. 2011;26(5):464–7. doi: 10.1177/0748730411414264. PubMed DOI
Teichman G, Cohen D, Ganon O, Dunsky N, Shani S, Gingold H, et al. RNAlysis: analyze your RNA sequencing data without writing a single line of code. BMC Biol. 2023;21(1):74. doi: 10.1186/s12915-023-01574-6. PubMed DOI PMC
Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and limitations of period estimation methods for circadian data. PLoS ONE. 2014;9(5):e96462. doi: 10.1371/journal.pone.0096462. PubMed DOI PMC
BioDare2. https://biodare2.ed.ac.uk/. Accessed May 5 2023.
Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25(5):372–80. doi: 10.1177/0748730410379711. PubMed DOI PMC
Yang R, Su Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics. 2010;26(12):i168–74. doi: 10.1093/bioinformatics/btq189. PubMed DOI PMC
Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. What time is it? Deep learning approaches for circadian rhythms. Bioinformatics. 2016;32(12):i8–17. doi: 10.1093/bioinformatics/btw243. PubMed DOI PMC
BIO_CYCLE Portal. http://circadiomics.igb.uci.edu/biocycle. Accessed May 4 2023.
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7. doi: 10.1093/nar/gkx356. PubMed DOI PMC
Abel JH. Accessed October 9. GitHub Repository Per2Py. https://github.com/johnabel/per2py. 2019.
Olney KC, Todd KT, Pallegar PN, Jensen TD, Cadiz MP, Gibson KA, et al. Widespread choroid plexus contamination in sampling and profiling of brain tissue. Mol Psychiatry. 2022;27(3):1839–47. doi: 10.1038/s41380-021-01416-3. PubMed DOI PMC
Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002;277(30):26934–43. doi: 10.1074/jbc.M203803200. PubMed DOI
Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun. 2019;10(1):947. doi: 10.1038/s41467-019-08591-6. PubMed DOI PMC
Szewczyk B, Gunther R, Japtok J, Frech MJ, Naumann M, Lee HO, et al. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep. 2023;42(2):112025. doi: 10.1016/j.celrep.2023.112025. PubMed DOI
Farg MA, Soo KY, Walker AK, Pham H, Orian J, Horne MK, et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging. 2012;33(12):2855–68. doi: 10.1016/j.neurobiolaging.2012.02.009. PubMed DOI
Davy BE, Robinson ML. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet. 2003;12(10):1163–70. doi: 10.1093/hmg/ddg122. PubMed DOI
Ruggeri G, Timms AE, Cheng C, Weiss A, Kollros P, Chapman T, et al. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A. 2018;176(3):676–81. doi: 10.1002/ajmg.a.38592. PubMed DOI PMC
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. doi: 10.1152/physrev.00025.2013. PubMed DOI PMC
Roepke TK, Kanda VA, Purtell K, King EC, Lerner DJ, Abbott GW. KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. FASEB J. 2011;25(12):4264–73. doi: 10.1096/fj.11-187609. PubMed DOI PMC
Myung J, Wu D, Simonneaux V, Lane TJ. Strong circadian rhythms in the Choroid Plexus: implications for Sleep-Independent Brain Metabolite Clearance. J Exp Neurosci. 2018;12:1179069518783762. doi: 10.1177/1179069518783762. PubMed DOI PMC
Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch KF, et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 2021;35(5–6):329–34. doi: 10.1101/gad.346460.120. PubMed DOI PMC
Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013;119:283–323. doi: 10.1016/B978-0-12-396971-2.00010-5. PubMed DOI
Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A. 1998;95(11):6097–102. doi: 10.1073/pnas.95.11.6097. PubMed DOI PMC
Sumova A, Jac M, Sladek M, Sauman I, Illnerova H. Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. J Biol Rhythms. 2003;18(2):134–44. doi: 10.1177/0748730403251801. PubMed DOI
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. doi: 10.1016/S0092-8674(00)81014-4. PubMed DOI
Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 2004;5:18. doi: 10.1186/1471-2199-5-18. PubMed DOI PMC
Sladek M, Rybova M, Jindrakova Z, Zemanova Z, Polidarova L, Mrnka L, et al. Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology. 2007;133(4):1240–9. doi: 10.1053/j.gastro.2007.05.053. PubMed DOI
Collins EJ, Cervantes-Silva MP, Timmons GA, O’Siorain JR, Curtis AM, Hurley JM. Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. 2021;31(2):171–85. doi: 10.1101/gr.263814.120. PubMed DOI PMC
Samad M, Agostinelli F, Sato T, Shimaji K, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 2022;50(W1):W183–90. doi: 10.1093/nar/gkac419. PubMed DOI PMC
Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41(D1):D1009–13. doi: 10.1093/nar/gks1161. PubMed DOI PMC
Matsumura R, Yoshimi K, Sawai Y, Yasumune N, Kajihara K, Maejima T, et al. The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation. Cell Rep. 2022;39(3):110703. doi: 10.1016/j.celrep.2022.110703. PubMed DOI
Edwards MD, Brancaccio M, Chesham JE, Maywood ES, Hastings MH. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Proc Natl Acad Sci U S A. 2016;113(10):2732–7. doi: 10.1073/pnas.1519044113. PubMed DOI PMC
Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37(2):187–92. doi: 10.1038/ng1504. PubMed DOI
Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell. 2009;36(3):417–30. doi: 10.1016/j.molcel.2009.10.012. PubMed DOI PMC
Fan Y, Hida A, Anderson DA, Izumo M, Johnson CH. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol. 2007;17(13):1091–100. doi: 10.1016/j.cub.2007.05.048. PubMed DOI PMC
Bering T, Blancas-Velazquez AS, Rath MF. Circadian clock genes are regulated by rhythmic corticosterone at physiological levels in the Rat Hippocampus. Neuroendocrinology. 2023;113(10):1076–90. doi: 10.1159/000533151. PubMed DOI PMC
Edelbo BL, Andreassen SN, Steffensen AB, MacAulay N. Day-night fluctuations in choroid plexus transcriptomics and cerebrospinal fluid metabolomics. PNAS Nexus. 2023;2(8):pgad262. doi: 10.1093/pnasnexus/pgad262. PubMed DOI PMC
Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. doi: 10.1146/annurev.biochem.73.011303.074134. PubMed DOI
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J. 2022;41(6):e109845. doi: 10.15252/embj.2021109845. PubMed DOI PMC
Nadanaka S, Yoshida H, Kano F, Murata M, Mori K. Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol Biol Cell. 2004;15(6):2537–48. doi: 10.1091/mbc.e03-09-0693. PubMed DOI PMC
Pan Z, Bao Y, Hu M, Zhu Y, Tan C, Fan L, et al. Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discov. 2023;9(1):56. doi: 10.1038/s41420-023-01355-8. PubMed DOI PMC
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70. doi: 10.1016/j.bbamcr.2013.06.028. PubMed DOI PMC
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929–37. doi: 10.1016/S0092-8674(00)81199-X. PubMed DOI
Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288(5466):682–5. doi: 10.1126/science.288.5466.682. PubMed DOI
Liska K, Sladek M, Houdek P, Shrestha N, Luzna V, Ralph MR, et al. High sensitivity of circadian clock in the hippocampal dentate gyrus to glucocorticoid- and GSK3beta-dependent signals. Neuroendocrinology. 2021;112:384–98. doi: 10.1159/000517689. PubMed DOI
Finger AM, Jaschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H et al. Intercellular coupling between peripheral circadian oscillators by TGF-beta signaling. Sci Adv. 2021;7(30). PubMed PMC
Nilsson C, Stahlberg F, Gideon P, Thomsen C, Henriksen O. The nocturnal increase in human cerebrospinal fluid production is inhibited by a beta 1-receptor antagonist. Am J Physiol. 1994;267(6 Pt 2):R1445–8. PubMed
Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):957–70. doi: 10.1016/j.neuroscience.2004.07.003. PubMed DOI PMC
Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD, Wakefield MJ, Lindsay H, et al. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci. 2015;9:123. doi: 10.3389/fnins.2015.00123. PubMed DOI PMC
Delezie J, Dumont S, Dardente H, Oudart H, Grechez-Cassiau A, Klosen P, et al. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26(8):3321–35. doi: 10.1096/fj.12-208751. PubMed DOI
Solar P, Zamani A, Kubickova L, Dubovy P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35. doi: 10.1186/s12987-020-00196-2. PubMed DOI PMC
Wang C, Lutes LK, Barnoud C, Scheiermann C. The circadian immune system. Sci Immunol. 2022;7(72):eabm2465. doi: 10.1126/sciimmunol.abm2465. PubMed DOI
Cermakian N, Stegeman SK, Tekade K, Labrecque N. Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol. 2022;44(2):193–207. doi: 10.1007/s00281-021-00903-7. PubMed DOI
Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci U S A. 2012;109(37):E2457–65. doi: 10.1073/pnas.1206274109. PubMed DOI PMC
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. doi: 10.1126/scitranslmed.3003748. PubMed DOI PMC
Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, et al. Nephron-specific deletion of Circadian Clock Gene Bmal1 alters the plasma and renal metabolome and impairs Drug Disposition. J Am Soc Nephrol. 2016;27(10):2997–3004. doi: 10.1681/ASN.2015091055. PubMed DOI PMC
Matsumura H, Honda K, Choi WS, Inoue S, Sakai T, Hayaishi O. Evidence that brain prostaglandin E2 is involved in physiological sleep-wake regulation in rats. Proc Natl Acad Sci U S A. 1989;86(14):5666–9. doi: 10.1073/pnas.86.14.5666. PubMed DOI PMC
Huang ZL, Urade Y, Hayaishi O. Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol. 2007;7(1):33–8. doi: 10.1016/j.coph.2006.09.004. PubMed DOI
Marguet F, Vezain M, Marcorelles P, Audebert-Bellanger S, Cassinari K, Drouot N, et al. Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants. Acta Neuropathol Commun. 2021;9(1):104. doi: 10.1186/s40478-021-01207-5. PubMed DOI PMC
Miners J, van Hulle C, Ince S, Jonaitis E, Okonkwo OC, Bendlin B et al. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer’s disease. Res Sq. 2023. PubMed PMC
Sotak M, Sumova A, Pacha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46(4):221–32. doi: 10.3109/07853890.2014.892296. PubMed DOI
Fuchs L, Mausner-Fainberg K, Luban A, Asseyer SE, Golan M, Benhamou M, et al. CTGF/CCN2 has a possible detrimental role in the inflammation and the remyelination failure in the early stages of multiple sclerosis. J Neuroimmunol. 2022;371:577936. doi: 10.1016/j.jneuroim.2022.577936. PubMed DOI
Stopa EG, Tanis KQ, Miller MC, Nikonova EV, Podtelezhnikov AA, Finney EM, et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS. 2018;15(1):18. doi: 10.1186/s12987-018-0102-9. PubMed DOI PMC
Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS. 2018;15(1):34. doi: 10.1186/s12987-018-0120-7. PubMed DOI PMC
Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A. 2016;113(19):E2705–13. doi: 10.1073/pnas.1604032113. PubMed DOI PMC
Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. doi: 10.1038/nrneurol.2012.263. PubMed DOI PMC
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30. doi: 10.1038/gim.2015.117. PubMed DOI PMC
Cheifetz PN. The daily rhythm of the secretion of corticotrophin and corticosterone in rats and mice. J Endocrinol. 1971;49(3):xi–xii. PubMed
Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2005;2(5):297–307. doi: 10.1016/j.cmet.2005.09.009. PubMed DOI
Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73. doi: 10.1016/j.cmet.2006.07.002. PubMed DOI
Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–7. doi: 10.1126/science.289.5488.2344. PubMed DOI
Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology. 2007;45(6):1478–88. doi: 10.1002/hep.21571. PubMed DOI
Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, et al. Guidelines for genome-scale analysis of Biological rhythms. J Biol Rhythms. 2017;32(5):380–93. doi: 10.1177/0748730417728663. PubMed DOI PMC
Drapsin M, Dockal T, Houdek P, Sladek M, Semenovykh K, Sumova A. Circadian clock in choroid plexus is resistant to immune challenge but dampens in response to chronodisruption. Brain Behav Immun. 2024;117:255–69. doi: 10.1016/j.bbi.2024.01.217. PubMed DOI