Circadian transcriptome
Dotaz
Zobrazit nápovědu
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus fyziologie MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- transkripční faktory ARNTL metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
- MeSH
- cirkadiánní rytmus * fyziologie MeSH
- epifýza mozková metabolismus MeSH
- hipokampus metabolismus MeSH
- krysa rodu rattus MeSH
- lipopolysacharidy * MeSH
- nadledviny metabolismus MeSH
- potkani Wistar MeSH
- slezina * metabolismus MeSH
- světlo * MeSH
- těhotenství MeSH
- transkriptom MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.
- MeSH
- konstitutivní androstanový receptor agonisté metabolismus MeSH
- lidé MeSH
- metabolismus lipidů účinky léků fyziologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- pyridiny aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR. In the current study, this approach was independently validated on 91 samples from 61 healthy donors. Additionally, we used the ratio of human to bacterial RNA to adjust the input RNA to include equal amounts of human RNA across all samples before cDNA synthesis, which then ensured comparable analysis using the same base human input material. Furthermore, we examined relative levels of ten known housekeeping genes, and assessed inter- and intra-individual differences in 61 salivary RNA isolates, while considering effects of demographical factors (e.g. sex, age), epidemiological factors comprising social habits (e.g. alcohol, cigarette consumption), oral hygiene (e.g. flossing, mouthwash), previous radiological diagnostic procedures (e.g. number of CT-scans) and saliva collection time (circadian periodic). Total human RNA amounts appeared significantly associated with age only (P ≤ 0.02). None of the chosen housekeeping genes showed significant circadian periodicity and either did not associate or were weakly associated with the 24 confounders examined, with one exception, 60% of genes were altered by mouthwash. ATP6, ACTB and B2M represented genes with the highest mean baseline expression (Ct-values ≤ 30) and were detected in all samples. Combining these housekeeping genes for normalization purposes did not decrease inter-individual variance, but increased the robustness. In summary, our work addresses critical confounders and provides important information for the successful examination of gene expression in human whole saliva.
- MeSH
- bakteriální RNA MeSH
- dospělí MeSH
- esenciální geny * MeSH
- exprese genu * MeSH
- komplementární DNA MeSH
- kontaminace DNA MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- RNA izolace a purifikace MeSH
- sliny metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metabolic syndrome and one of its manifestations, essential hypertension, is an important cause of worldwide morbidity and mortality. Morbidity and mortality associated with hypertension are caused by organ complications. Previously we revealed a decrease of blood pressure and an amelioration of cardiac fibrosis in a congenic line of spontaneously hypertensive rats (SHR), in which a short segment of chromosome 8 (encompassing only 7 genes) was exchanged for a segment of normotensive polydactylous (PD) origin. To unravel the genetic background of this phenotype we compared heart transcriptomes between SHR rat males and this chromosome 8 minimal congenic line (PD5). We found 18 differentially expressed genes, which were further analyzed using annotations from Database for Annotation, Visualization and Integrated Discovery (DAVID). Four of the differentially expressed genes (Per1, Nr4a1, Nr4a3, Kcna5) belong to circadian rhythm pathways, aldosterone synthesis and secretion, PI3K-Akt signaling pathway and potassium homeostasis. We were also able to confirm Nr4a1 2.8x-fold upregulation in PD5 on protein level using Western blotting, thus suggesting a possible role of Nr4a1 in pathogenesis of the metabolic syndrome.
- MeSH
- fenotyp MeSH
- fibróza MeSH
- funkce levé komory srdeční genetika MeSH
- genetická predispozice k nemoci MeSH
- hypertenze genetika metabolismus patofyziologie MeSH
- kardiomyopatie genetika metabolismus patologie MeSH
- krevní tlak genetika MeSH
- metabolický syndrom genetika metabolismus patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední SHR MeSH
- regulace genové exprese MeSH
- remodelace komor genetika MeSH
- signální transdukce genetika MeSH
- srdeční komory metabolismus patologie MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom * MeSH
- zvířata kongenní MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Animals create implicit memories of the time of day that significant events occur then anticipate the recurrence of those conditions at the same time on subsequent days. We tested the hypothesis that implicit time memory for daily encounters relies on the setting of the canonical circadian clockwork in brain areas involved in the formation or expression of context memories. We conditioned mice to avoid locations paired with a mild foot shock at one of two Zeitgeber times set 8 hours apart. Place avoidance was exhibited only when testing time matched the prior training time. The suprachiasmatic nucleus, dorsal striatum, nucleus accumbens, cingulate cortex, hippocampal complex, and amygdala were assessed for clock gene expression. Baseline phase dependent differences in clock gene expression were found in most tissues. Evidence for conditioned resetting of a molecular circadian oscillation was found only in the striatum (dorsal striatum and nucleus accumbens shell), and specifically for Per2 expression. There was no evidence of glucocorticoid stress response in any tissue. The results are consistent with a model where temporal conditioning promotes a selective Per2 response in dopamine-targeted brain regions responsible for sensorimotor integration, without resetting the entire circadian clockwork.
- MeSH
- čas MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period biosyntéza MeSH
- corpus striatum fyziologie MeSH
- exprese genu * MeSH
- messenger RNA biosyntéza MeSH
- modely neurologické MeSH
- myši inbrední C57BL MeSH
- podmiňování (psychologie) * MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
- MeSH
- algoritmy MeSH
- buněčný cyklus genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory genetika metabolismus patologie MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- validační studie MeSH
Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed "diapause development." The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming.
- MeSH
- cirkadiánní rytmus genetika MeSH
- diapauza hmyzu genetika MeSH
- diapauza genetika MeSH
- Drosophilidae genetika MeSH
- fotoperioda MeSH
- hmyz genetika MeSH
- hmyzí proteiny genetika MeSH
- larva metabolismus MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- stanovení celkové genové exprese metody MeSH
- transkriptom MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
- MeSH
- chemická precipitace MeSH
- cirkadiánní rytmus * účinky léků genetika účinky záření MeSH
- ferritiny genetika metabolismus MeSH
- fytoplankton účinky léků genetika růst a vývoj metabolismus MeSH
- hmotnostní spektrometrie MeSH
- homeostáza * účinky léků genetika účinky záření MeSH
- kinetika MeSH
- mikrobiální viabilita účinky léků účinky záření MeSH
- mořská voda mikrobiologie MeSH
- proteiny vázající železo metabolismus MeSH
- regulace genové exprese účinky léků účinky záření MeSH
- světlo MeSH
- transkriptom genetika MeSH
- western blotting MeSH
- železo metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: Bipolar disorder is a common psychiatric disease characterized by mood disturbances with alternating episodes of mania and depression. Moreover, disturbances in the sleep/wake cycle are prevalent. We tested a hypothesis that the function of the circadian system, which drives the sleep/wake cycle, may differ in patients with bipolar disorder depending on whether they are experiencing an episode of mania or depression. METHODS: To assess the functional state of the central circadian clock, daily profiles of melatonin levels in saliva were determined. The functional state of the peripheral clocks was assessed by determining daily profiles of Per1 and Nr1d1 clock gene expression in buccal mucosa cells. Sixteen patients with bipolar disorder in a manic episode, 22 patients in a depressive episode, and 19 healthy control subjects provided samples at regular intervals during a 24-hour cycle. RESULTS: During episodes of mania, the daily profiles of melatonin differed compared with healthy controls and patients in an episode of depression, mainly due to elevated melatonin levels during the daytime. No difference was found between melatonin profiles of control subjects and patients in depression. The Per1 and Nr1d1 profiles were advanced in patients in mania compared with those in depression. Compared with controls, a trend toward an advance was apparent in the profiles of patients during an episode of mania but not depression. The amplitude of the Nr1d1 expression profile was higher in mania than in depression. CONCLUSIONS: The data revealed differences in the functional state of the circadian system in patients with bipolar disorder depending on whether they were experiencing a manic or a depressive episode.
- MeSH
- bipolární porucha genetika patofyziologie psychologie MeSH
- chronobiologické poruchy genetika patofyziologie psychologie MeSH
- cirkadiánní hodiny genetika MeSH
- cirkadiánní proteiny Period genetika MeSH
- cirkadiánní rytmus genetika MeSH
- dospělí MeSH
- jaderné receptory - podrodina 1, skupina D, člen 1 genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- melatonin metabolismus MeSH
- messenger RNA metabolismus MeSH
- prevalence MeSH
- sliny chemie MeSH
- studie případů a kontrol MeSH
- transkriptom MeSH
- ústní sliznice metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH