Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
MC_UP_1201/4
Medical Research Council - United Kingdom
R01 NS104497
NINDS NIH HHS - United States
PJT148719
CIHR - Canada
PubMed
34048425
PubMed Central
PMC8191895
DOI
10.1371/journal.pcbi.1008987
PII: PCOMPBIOL-D-20-01559
Knihovny.cz E-resources
- MeSH
- Behavior, Animal MeSH
- Period Circadian Proteins genetics MeSH
- Circadian Rhythm * MeSH
- Locomotion MeSH
- Luciferases genetics MeSH
- Mutation MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Feeding Behavior MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Period Circadian Proteins MeSH
- Luciferases MeSH
- Per2 protein, mouse MeSH Browser
Modification of the Per2 clock gene in mPer2Luc reporter mice significantly alters circadian function. Behavioral period in constant dark is lengthened, and dissociates into two distinct components in constant light. Rhythms exhibit increased bimodality, enhanced phase resetting to light pulses, and altered entrainment to scheduled feeding. Mechanistic mathematical modelling predicts that enhanced protein interactions with the modified mPER2 C-terminus, combined with differential clock regulation among SCN subregions, can account for effects on circadian behavior via increased Per2 transcript and protein stability. PER2::LUC produces greater suppression of CLOCK:BMAL1 E-box activity than PER2. mPer2Luc carries a 72 bp deletion in exon 23 of Per2, and retains a neomycin resistance cassette that affects rhythm amplitude but not period. The results show that mPer2Luc acts as a circadian clock mutation illustrating a need for detailed assessment of potential impacts of c-terminal tags in genetically modified animal models.
Department of Biological Sciences Vanderbilt University Nashville Tennessee United States of America
Department of Cell and Systems Biology University of Toronto Toronto Ontario Canada
Department of Mathematics University of Toronto Toronto Ontario Canada
Department of Psychology University of Toronto Toronto Ontario Canada
MRC Laboratory of Molecular Biology Cambridge United Kingdom
See more in PubMed
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al.. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci U.S.A. 2004;100: 5339–5346. doi: 10.1073/pnas.0308709101 PubMed DOI PMC
Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 2004;14: 2289–2295. doi: 10.1016/j.cub.2004.11.057 PubMed DOI PMC
Ignowski JM, Schaffer DV. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol. Bioeng. 2004;86: 827–834. doi: 10.1002/bit.20059 PubMed DOI
Yamazaki S, Takahashi JS. Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol. 2005;393: 288–301. doi: 10.1016/S0076-6879(05)93012-7 PubMed DOI PMC
Feeney KA, Putker M, Brancaccio M, O’Neill JS. In-depth Characterization of Firefly Luciferase as a Reporter of Circadian Gene Expression in Mammalian Cells. J Biol Rhythms. 2016;31: 540–550. doi: 10.1177/0748730416668898 PubMed DOI PMC
Takahashi JS. Molecular components of the circadian clock in mammals. Diabetes Obes. Metab. 2015;17 Suppl 1: 6–11. doi: 10.1111/dom.12514 PubMed DOI PMC
Takahashi JS. Molecular Architecture of the Circadian Clock in Mammals. 2016. Apr 5. In: Sassone-Corsi P, Christen Y, editors. A Time for Metabolism and Hormones [Internet]. Cham (CH): Springer; 2016. https://www.ncbi.nlm.nih.gov/books/NBK453183/ doi: 10.1007/978-3-319-27069-2_2 PubMed DOI
Yagita K, Tamanini F, Yasuda M, Hoeijmakers JH, van der Horst GT, Okamura H. (2002) Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21(6):1301–1314. doi: 10.1093/emboj/21.6.1301 PubMed DOI PMC
Tamanini F, Yagita K, Okamura H, van der Horst GT. Nucleocytoplasmic shuttling of clock proteins. Methods Enzymol. 2005;393: 418–435. doi: 10.1016/S0076-6879(05)93020-6 PubMed DOI
Hastings MH, Maywood ES, O’Neill JS. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 2008;18: R805–R815. doi: 10.1016/j.cub.2008.07.021 PubMed DOI
Maywood ES, Chesham JE, Meng QJ, Nolan PM, Loudon AS, Hastings MH. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 2011;31: 1539–1544. doi: 10.1523/JNEUROSCI.4107-10.2011 PubMed DOI PMC
O’Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb. Exp. Pharmacol. 2013;217: 67–103. doi: 10.1007/978-3-642-25950-0_4 PubMed DOI
Sakai T, Tamura T, Kitamoto T, Kidokoro Y. A clock gene, period, plays a key role in long-term memory formation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2004;101: 16058–16063. doi: 10.1073/pnas.0401472101 PubMed DOI PMC
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007;5: e34. doi: 10.1371/journal.pbio.0050034 PubMed DOI PMC
Ramanathan C, Xu H, Khan SK, Shen Y, Gitis PJ, Welsh DK, et al.. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet. 2014;10: e1004244. doi: 10.1371/journal.pgen.1004244 eCollection 2014 Apr. PubMed DOI PMC
de Lartigue G, McDougle M. Dorsal striatum dopamine oscillations: Setting the pace of food anticipatory activity. Acta Physiol. (Oxf). 2019;225: e13152. doi: 10.1111/apha.13152 Epub 2018 Jun 27. PubMed DOI PMC
Shrestha TC, Šuchmanová K, Houdek P, Sumová A, Ralph MR. Implicit time-place conditioning alters Per2 mRNA expression selectively in striatum without shifting its circadian clocks. Sci. Rep. 2018;8: 15547. doi: 10.1038/s41598-018-33637-y PubMed DOI PMC
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, et al.. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell. 2019; 177: 896–909. doi: 10.1016/j.cell.2019.02.017 PubMed DOI PMC
Schwartz WJ, Zimmerman P. Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J. Neurosci. 1990;10: 3685–3694. doi: 10.1523/JNEUROSCI.10-11-03685.1990 PubMed DOI PMC
Yamada N, Shimoda K, Ohi K, Takahashi S, Takahashi K. Free-access to a running wheel shortens the period of free-running rhythm in blinded rats. Physiol. Behav. 1988;42: 87–91. doi: 10.1016/0031-9384(88)90265-x PubMed DOI
Edgar DM, Martin CE, Dement WC. Activity feedback to the mammalian circadian pacemaker: influence on observed measures of rhythm period length. J. Biol. Rhythms. 1991;6: 185–199. doi: 10.1177/074873049100600301 PubMed DOI
Kas MJ, Edgar DM. Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in Octodon degus. J. Biol. Rhythms. 2001;16: 66–75. doi: 10.1177/074873040101600108 PubMed DOI
Etchegaray JP, Yu EA, Indic P, Dallmann R, Weaver DR. Casein kinase 1 delta (CK1delta) regulates period length of the mouse suprachiasmatic circadianclock in vitro. PLoS One. 2010;5: e10303. doi: 10.1371/journal.pone.0010303 PubMed DOI PMC
Foley NC, Tong TY, Foley D, Lesauter J, Welsh DK, Silver R. Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J. Neurosci. 2011;33: 1851–1865. doi: 10.1111/j.1460-9568.2011.07682.x PubMed DOI PMC
Polidarová L, Sládek M, Novosadová Z, Sumová A. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light, Chronobiol. Int. 2017;34: 105–117. doi: 10.1080/07420528.2016.1242491 PubMed DOI
Maywood ES, Drynan L, Chesham JE, Edwards MD, Dardente H, Fustin JM, et al.. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proc. Natl. Acad. Sci. U.S.A. 2013;110: 9547–1952. doi: 10.1073/pnas.1220894110 PubMed DOI PMC
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247: 975–978. doi: 10.1126/science.2305266 PubMed DOI
Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL. Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res. 1990;525: 45–58. doi: 10.1016/0006-8993(90)91319-c PubMed DOI
Sollars PJ, Kimble DP, Pickard GE. Restoration of circadian behavior by anterior hypothalamic heterografts. J. Neurosci. 1995;15: 2109–2122. doi: 10.1523/JNEUROSCI.15-03-02109.1995 PubMed DOI PMC
Boer GJ, van Esseveldt KE, van der Geest BA, Duindam H, Rietveld WJ. Vasopressin-deficient suprachiasmatic nucleus grafts re-instate circadian rhythmicity in suprachiasmatic nucleus-lesioned arrhythmic rats. Neurosci. 1999;89: 375–385. doi: 10.1016/s0306-4522(98)00300-5 PubMed DOI
Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 2003;13: 664–668. doi: 10.1016/s0960-9822(03)00222-7 PubMed DOI
Forger DB, Dean DA 2nd, Gurdziel K, Leloup JC, Lee C, Von Gall C, et al.. Development and validation of computational models for mammalian circadian oscillators. OMICS. 2003;7: 387–400. doi: 10.1089/153623103322637698 PubMed DOI
Kim JK, Forger DB. A mechanism for robust circadian timekeeping via stoichiometric balance. Mol. Syst. Biol. 2012;8: 630. doi: 10.1038/msb.2012.62 PubMed DOI PMC
DeWoskin D, Geng W, Stinchcombe AR, Forger DB. It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scale and organisms. Interface Focus 2014;4: 20130076. doi: 10.1098/rsfs.2013.0076 PubMed DOI PMC
Stinchcombe AR, Mouland JW, Wong KY, Lucas RJ, Forger DB. Multiplexing visual signals in the suprachiasmatic nuclei. Cell Rep. 2017;21: 1418–1425. doi: 10.1016/j.celrep.2017.10.045 PubMed DOI
Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, et al.. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci. 2003;23: 6141–6151. doi: 10.1523/JNEUROSCI.23-14-06141.2003 PubMed DOI PMC
Cormier HC, Della-Maggiore V, Karatsoreos IN, Koletar MM, Ralph MR. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. Eur. J. Neurosci. 2015;41: 79–88. doi: 10.1111/ejn.12637 PubMed DOI
Tokuda IT, Ono D, Honma S, Honma KI, Herzel H. Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors. PLoS Comput Biol. 2018;14: e1006607. doi: 10.1371/journal.pcbi.1006607 eCollection 2018 Dec. PubMed DOI PMC
Ohsaki K, Oishi K, Kozono Y, Nakayama K, Nakayama KI, Ishida N. The role of {beta}-TrCP1 and {beta}-TrCP2 in circadian rhythm generation by mediating degradation of clock protein PER2. J. Biochem. 2008;144: 609–18. doi: 10.1093/jb/mvn112 Epub 2008 Sep 8. PubMed DOI
Eide EJ, Kang H, Crapo S, Gallego M, Virshup DM. Casein kinase I in the mammalian circadian clock. Methods Enzymol. 2005;393: 408–418. doi: 10.1016/S0076-6879(05)93019-X PubMed DOI PMC
Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT. Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation. Nucleic Acids Res. 2009;37: 26–37. 10.1093/nar/gkn893. doi: 10.1093/nar/gkn893 PubMed DOI PMC
Yoo SH, Kojima S, Shimomura K, Koike N, Buhr ED, Furukawa T, et al.. Period2 3’-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proc. Natl. Acad. Sci. U.S.A. 2017;114: E8855–E8864. doi: 10.1073/pnas.1706611114 PubMed DOI PMC
Nangle SN, Rosensweig C, Koike N, Tei H, Takahashi JS, Green CB, Zheng N. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Elife. 2014;3: e03674. doi: 10.7554/eLife.03674 PubMed DOI PMC
Albrecht U, Bordon A, Schmutz I, Ripperger J. The multiple facets of Per2. Cold Spring Harb. Symp. Quant. Biol. 2007;72: 95–104. doi: 10.1101/sqb.2007.72.001 PubMed DOI
Mikkelsen JD, Vrang N, Mrosovsky N. Expression of Fos in the circadian system following nonphotic stimulation. Brain Res. Bull. 1998;47:367–376. doi: 10.1016/s0361-9230(98)00121-x PubMed DOI
Coogan AN, Piggins HD. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei. Eur. J. Neurosci. 2005;22: 158–168. doi: 10.1111/j.1460-9568.2005.04193.x PubMed DOI
Ye R, Selby CP, Chiou YY, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev. 2014;28: 1989–1998. doi: 10.1101/gad.249417.114 PubMed DOI PMC
Chiou YY, Yang Y, Rashid N, Ye R, Selby CP, Sancar A. Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a cryptochrome-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 2016;113: E6072–E6079. doi: 10.1073/pnas.1612917113 PubMed DOI PMC
Artelt P, Grannemann R, Stocking C, Friel J, Bartsch J, Hauser H. The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 1991;99: 249–254. doi: 10.1016/0378-1119(91)90134-w PubMed DOI
Valera A, Perales JC, Hatzoglou M, Bosch F. Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 1994;5:449–456. doi: 10.1089/hum.1994.5.4-449 PubMed DOI
Bondy C.A., Cheng C.M. Signaling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol. 2004;490: 25–31. doi: 10.1016/j.ejphar.2004.02.042 PubMed DOI
Anhê GF, Caperuto LC, Pereira-Da-Silva M, Souza LC, Hirata AE, Velloso LA, et al.. In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus. J. Neurochem. 2004;90: 559–566. doi: 10.1111/j.1471-4159.2004.02514.x PubMed DOI
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 2010;72: 551–77. doi: 10.1146/annurev-physiol-021909-135919 PubMed DOI PMC
Crosby P, Hoyle NP, O’Neill JS. Flexible Measurement of Bioluminescent Reporters Using an Automated Longitudinal Luciferase Imaging Gas- and Temperature-optimized Recorder (ALLIGATOR) J. Vis. Exp. 2017;130: e56623. PubMed PMC
Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 2005;8: 267–269. doi: 10.1038/nn1395 PubMed DOI
Koletar MM, Cheng HM, Penninger JM, Ralph MR. Loss of dexras1 alters nonphotic circadian phase shifts and reveals a role for the intergeniculate leaflet (IGL) in gene-targeted mice, Chronobiol. Int. 2011;28: 553–562, doi: 10.3109/07420528.2011.592235 PubMed DOI
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. Wiley Interdiscip Rev. Syst. Biol. Med. 2019;11:e 1439. doi: 10.1002/wsbm.1439 PubMed DOI PMC
Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. J. Comp. Physiol. 1976;106: 333–355.
Daan S, Berde C. Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J. Theor. Biol. 1978;70: 297–313. doi: 10.1016/0022-5193(78)90378-8 PubMed DOI
Kawato M, Suzuki R. Two coupled neural oscillators as a model of the circadian pacemaker. J. Theor. Biol. 1980;86: 547–575. doi: 10.1016/0022-5193(80)90352-5 PubMed DOI
Pickard GE, Turek FW. Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei. Science. 1982;215: 1119–1121. doi: 10.1126/science.7063843 PubMed DOI
Pickard GE, Turek FW. The suprachiasmatic nuclei: two circadian clocks? Brain Res. 1983;268: 201–210. doi: 10.1016/0006-8993(83)90486-9 PubMed DOI
de la Iglesia HO, Meyer J, Carpino A Jr, Schwartz WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science. 2000;290: 799–801. doi: 10.1126/science.290.5492.799 PubMed DOI
Yan L, Foley NC, Bobula JM, Kriegsfeld LJ, Silver R. Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J. Neurosci. 2005;25: 9017–9026. doi: 10.1523/JNEUROSCI.2538-05.2005 PubMed DOI PMC
de la Iglesia HO, Cambras T, Schwartz WJ, Díez-Noguera A. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 2004;14: 796–800. doi: 10.1016/j.cub.2004.04.034 PubMed DOI
Sumová A, Illnerová H. Effect of photic stimuli disturbing overt circadian rhythms on the dorsomedial and ventrolateral SCN rhythmicity. Brain Res. 2005;1048: 161–169. doi: 10.1016/j.brainres.2005.04.061 PubMed DOI
Mistlberger RE. Food-anticipatory circadian rhythms: concepts and methods. European J. Neurosci. 2009;30: 1718–1729, doi: 10.1111/j.1460-9568.2009.06965.x PubMed DOI
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14: 2950–2961. doi: 10.1101/gad.183500 PubMed DOI PMC
Nováková M, Polidarová L, Sládek M & Sumová A. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light Neurosci. 2011;197: 65–71. doi: 10.1016/j.neuroscience.2011.09.028 PubMed DOI
Della Maggiore V, Ralph MR. The effect of amphetamine on locomotion depends on the motor device utilized. The open field vs. the running wheel. Pharmacol. Biochem. Behav. 2000;65: 585–590. doi: 10.1016/s0091-3057(99)00260-9 PubMed DOI
Aschoff J. Response curves in circadian periodicity. In: Aschoff J. ed, Circadian Clocks, North-Holland, Amsterdam. 1965. pp 95–111.
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999;98: 193–205. doi: 10.1016/s0092-8674(00)81014-4 PubMed DOI
Seluanov A, Vaidya A, Gorbunova V. Establishing primary a dult fibroblast cultures from rodents. J. Vis. Exp. 2010;44. pii: 2033. doi: 10.3791/2033 PubMed DOI PMC
Hastings M. H., Reddy A. B., McMahon D. G., & Maywood E. S. Analysis of circadian mechanisms in the suprachiasmatic nucleus by transgenesis and biolistic transfection. Methods Enzymol. 2005;393: 579–592. doi: 10.1016/S0076-6879(05)93030-9 PubMed DOI
Diekman CO, Belle MD, Irwin RP, Allen CN, Piggins HD, Forger DB. Causes and consequences of hyperexcitation in central clock neurons. PLoS Comput. Biol. 2013;9: e1003196. doi: 10.1371/journal.pcbi.1003196 PubMed DOI PMC