On the mechanism of calcium-dependent activation of NADPH oxidase 5 (NOX5)

. 2020 Jun ; 287 (12) : 2486-2503. [epub] 20191220

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31785178

Grantová podpora
MC_U117533887 Medical Research Council - United Kingdom
FC001029 Wellcome Trust - United Kingdom
MC_U117584256 Medical Research Council - United Kingdom
FC001029 Medical Research Council - United Kingdom
Cancer Research UK - United Kingdom
731077 Wellcome Trust - United Kingdom

It is now accepted that reactive oxygen species (ROS) are not only dangerous oxidative agents but also chemical mediators of the redox cell signaling and innate immune response. A central role in ROS-controlled production is played by the NADPH oxidases (NOXs), a group of seven membrane-bound enzymes (NOX1-5 and DUOX1-2) whose unique function is to produce ROS. Here, we describe the regulation of NOX5, a widespread family member present in cyanobacteria, protists, plants, fungi, and the animal kingdom. We show that the calmodulin-like regulatory EF-domain of NOX5 is partially unfolded and detached from the rest of the protein in the absence of calcium. In the presence of calcium, the C-terminal lobe of the EF-domain acquires an ordered and more compact structure that enables its binding to the enzyme dehydrogenase (DH) domain. Our spectroscopic and mutagenesis studies further identified a set of conserved aspartate residues in the DH domain that are essential for NOX5 activation. Altogether, our work shows that calcium induces an unfolded-to-folded transition of the EF-domain that promotes direct interaction with a conserved regulatory region, resulting in NOX5 activation.

Zobrazit více v PubMed

Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y & Dong W (2016) ROS and ROS‐mediated cellular signaling. Oxid Med Cell Longev 2016, e4350965. PubMed PMC

Ogrunc M (2014) Reactive oxygen species: the good, the bad, and the enigma. Mol Cell Oncol 1, e964033. PubMed PMC

Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194, 7–15. PubMed PMC

Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW & Mattevi A (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci USA 114, 6764–6769. PubMed PMC

Lambeth JD & Neish AS (2014) Nox enzymes and new thinking on reactive oxygen: a double‐edged sword revisited. Annu Rev Pathol 9, 119–145. PubMed

Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause KH & Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279, 18583–18591. PubMed

Tirone F & Cox J (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581, 1202–1208. PubMed

Chen F, Barman S, Yu Y, Haigh S, Wang Y, Dou H, Bagi Z, Han W, Su Y & Fulton DJ (2014) Caveolin‐1 is a negative regulator of NADPH oxidase‐derived reactive oxygen species. Free Radic Biol Med 73, 201–203. PubMed PMC

Chen F, Haigh S, Yu Y, Benson T, Wang Y, Li X, Dou H, Bagi Z, Verin AD, Stepp DW et al (2015) Nox5 stability and superoxide production is regulated by C‐terminal binding of Hsp90 and CO‐chaperones. Free Radic Biol Med 89, 793–805. PubMed PMC

Jamali AE, Valente AJ, Lechleiter JD, Gamez MJ, Pearson DW, Nauseef WM & Clark RA (2008) Novel Redox‐dependent regulation of Nox5 by the tyrosine kinase c‐abl. Free Radic Biol Med 44, 868–881. PubMed PMC

Bedard K & Krause K (2007) The NOX family of ROS‐generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245–313. PubMed

Touyz RM, Anagnostopoulou A, Rios F, Montezano AC & Camargo LL (2019) NOX5: molecular biology and pathophysiology. Exp Physiol 104, 605–616. PubMed PMC

Fulton DJR (2009) Nox5 and the regulation of cellular function. Antioxid Redox Signal 11, 2443–2452. PubMed PMC

Zhang X, Krause KH, Xenarios I, Soldati T & Boeckmann B (2013) Evolution of the Ferric Reductase Domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS ONE One 8, e58126. PubMed PMC

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446. PubMed

Tirone F, Radu L, Craescu CT & Cox JA (2010) Identification of the binding site for the regulatory calcium‐binding domain in the catalytic domain of NOX5. Biochemistry 49, 761–771. PubMed

Wei C‐C, Motl N, Levek K, Chen LQ, Yang Y‐P, Johnson T, Hamilton L & Stuehr DJ (2010) Conformational States and kinetics of the calcium binding domain of NADPH oxidase 5. Open Biochem J 4, 59–67. PubMed PMC

Paoletti F & Pastore A (2017) Conformational rigidity within plasticity promotes differential target recognition of nerve growth factor. Front Mol Biosci 3, 1–10. PubMed PMC

Krudy GA, Brito RMM, Putkey JA & Rosevear PR (1992) Conformational changes in the metal‐binding sites of cardiac troponin C induced by calcium binding. Biochemistry 31, 1595–1602. PubMed

Biekofsky RR, Martin SR, Browne JP, Bayley PM & Feeney J (1998) Ca 2 + coordination to backbone carbonyl oxygen atoms in calmodulin and other EF‐hand proteins: 15 N chemical shifts as probes for monitoring individual‐site Ca2+ coordination. Biochemistry 37, 7617–7629. PubMed

Grabarek Z (2006) Structural basis for diversity of the EF‐hand calcium‐binding proteins. Jof Mol Biol 359, 509–525. PubMed

Li XJ, Grunwald D, Mathieu J, Morel F & Stasia MJ (2005) Crucial role of two potential cytosolic regions of Nox 2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation. J Biol Chem 280, 14962–14973. PubMed

De Nicola GF, Martin S, Bullard B & Pastore A (2010) Solution structure of the Apo C‐terminal domain of the lethocerus F1 troponin C isoform. 1719–1726. Biochemistry 49, 1719–1726. PubMed PMC

La Verde V, Trande M, D’Onofrio M, Dominici P & Astegno A (2018) Binding of calcium and target peptide to calmodulin‐like protein CML19, the centrin 2 of Arabidopsis thaliana . Int J Biol Macromol 108, 1289–1299. PubMed

Aravind P, Chandra K, Reddy PP, Jeromin A, Chary KVR & Sharma Y (2008) Regulatory and structural EF‐hand motifs of neuronal calcium sensor‐1: Mg2+ modulates Ca2+ binding, Ca2+‐induced conformational changes, and equilibrium unfolding transitions. J Mol Biol 376, 1100–1115. PubMed

Wei CC, Fabry E, Hay E, Lloyd L, Kaufman N, Yang YP & Stuehr DJ (2019) Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dyn 1–17. 10.1080/07391102.2019.1633409 PubMed DOI

Matei E, Miron S, Blouquit Y, Duchambon P, Durussel I, Cox JA & Craescu CT (2003) C‐terminal half of human centrin 2 behaves like a regulatory EF‐hand domain. Biochemistry 42, 1439–1450. PubMed

Yang A, Miron S, Duchambon P, Assairi L, Blouquit Y & Craescu CT (2006) Centrin 2 has a closed structure, binds calcium with a very low affinity, and plays a role in the protein self‐assembly. Biochemistry 45, 880–889. PubMed

Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J & Lopez R (2010) A new bioinformatics analysis tools framework at EMBL‐EBI. Nucleic Acids Res 38, W695–W699. PubMed PMC

Robert X & Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42 (W1), W320–W324. PubMed PMC

Gopalakrishna R & Anderson WB (1982) Ca2+‐induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl‐Sepharose affinity chromatography. Biochem Biophys Res Commun 104, 830–836. PubMed

Hayashi N, Matsubara M, Takasaki A, Titani K & Taniguchi H (1998) An expression system of rat calmodulin using T7 phage promoter in Escherichia coli . Protein Expr Purif 12, 25–28. PubMed

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J & Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293. PubMed

Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J & Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696. PubMed

Ceccon M, Millana Fananas E, Massari M, Mattevi A & Magnani F (2018) Engineering stability in NADPH oxidases: a common strategy for enzyme production. Mol Membr Biol 34, 67–76. PubMed

Kabsch W (2010). Xds. Acta Crystallogr D Biol Crystallogr 66, 125–132. PubMed PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242. PubMed PMC

Emsley P & Cowtan K. (2004) Coot: Model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(12 I), 2126–2132. PubMed

Murshudov GN, Vagin AA & Dodson EJ (1997) Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255. PubMed

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera ‐ A visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...