An intrinsically disordered proteins community for ELIXIR
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
MC_U105185859
Medical Research Council - United Kingdom
U24 HG007822
NHGRI NIH HHS - United States
PubMed
31824649
PubMed Central
PMC6880265
DOI
10.12688/f1000research.20136.1
PII: ELIXIR-1753
Knihovny.cz E-zdroje
- Klíčová slova
- ELIXIR, cellular regulation, community standards, databases, intrinsically disordered proteins, protein dynamics, protein function, protein-protein interactions,
- MeSH
- vnitřně neuspořádané proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- vnitřně neuspořádané proteiny MeSH
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.
BCPL CPERI Centre for Research and Technology Hellas Thessalonica 57001 Greece
Computational Biology Laboratory Danish Cancer Society Research Center Copenhagen 2100 Denmark
Department of Biochemistry Eötvös Loránd University Budapest H 1117 Hungary
Department of Biochemistry University of Zurich Zurich Switzerland
Department of Biomedical Sciences University of Padua Padua Italy
Department of Chemistry and CERM Ugo Schiff University of Florence Florence Italy
Department of Genetics University of Cambridge Cambridge CB2 3EH UK
Division of Cancer Biology Institute of Cancer Research UK London SW3 6JB UK
ELIXIR Hub Wellcome Genome Campus Cambridge CB10 1SD UK
European Bioinformatics Institute European Molecular Biology Laboratory Cambridge CB10 1SD UK
European Molecular Biology Laboratory Hamburg Germany
HES SO HEG and SIB Text Mining Swiss Institute of Bioinformatics Geneva Switzerland
Institut de Biologie Structurale Université Grenoble Alpes Grenoble 38000 France
Institute of Organic Chemistry and Biochemistry CAS Prague Czech Republic
Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
MRC Laboratory of Molecular Biology Cambridge CB2 0QH UK
School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW Australia
Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
Swiss Prot Group SIB Swiss Institute of Bioinformatics Geneva Switzerland
Universitat Pompeu Fabra Barcelona Spain
University of Wisconsin Madison Madison WI 53706 1544 USA
VIB Center for Structural Biology VIB Flemish Institute for Biotechnology Brussels 1050 Belgium
Zobrazit více v PubMed
Babu MM, Kriwacki RW, Pappu RV: Structural biology. Versatility from protein disorder. PubMed DOI
Baggett DW, Nath A: The Rational Discovery of a Tau Aggregation Inhibitor. PubMed DOI PMC
Bah A, Forman-Kay JD: Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. PubMed DOI PMC
Beltrao P, Albanèse V, Kenner LR, et al. : Systematic functional prioritization of protein posttranslational modifications. PubMed DOI PMC
Bernadó P, Mylonas E, Petoukhov MV, et al. : Structural characterization of flexible proteins using small-angle X-ray scattering. PubMed DOI
Best RB: Computational and theoretical advances in studies of intrinsically disordered proteins. PubMed DOI
Blikstad C, Ivarsson Y: High-throughput methods for identification of protein-protein interactions involving short linear motifs. PubMed DOI PMC
Bonetti D, Troilo F, Brunori M, et al. : How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein? PubMed DOI PMC
Borgia A, Borgia MB, Bugge K, et al. : Extreme disorder in an ultrahigh-affinity protein complex. PubMed DOI PMC
Britan A, Cusin I, Hinard V, et al. : Accelerating annotation of articles via automated approaches: evaluation of the neXtA PubMed DOI PMC
Buljan M, Chalancon G, Eustermann S, et al. : Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. PubMed DOI PMC
Camilloni C, De Simone A, Vranken WF, et al. : Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. PubMed DOI
Chong SH, Chatterjee P, Ham S: Computer Simulations of Intrinsically Disordered Proteins. PubMed DOI
Chouard T: Structural biology: Breaking the protein rules. PubMed DOI
Cilia E, Pancsa R, Tompa P, et al. : The DynaMine webserver: predicting protein dynamics from sequence. PubMed DOI PMC
Corbi-Verge C, Kim PM: Motif mediated protein-protein interactions as drug targets. PubMed DOI PMC
Csizmok V, Forman-Kay JD: Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. PubMed DOI
Davey NE: The functional importance of structure in unstructured protein regions. PubMed DOI
Davey NE, Cyert MS, Moses AM: Short linear motifs - PubMed DOI PMC
Davey NE, Morgan DO: Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. PubMed DOI PMC
Davey NE, Seo MH, Yadav VK, et al. : Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. PubMed DOI
Davey NE, Travé G, Gibson TJ: How viruses hijack cell regulation. PubMed DOI
Dosztányi Z, Csizmók V, Tompa P, et al. : The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. PubMed DOI
Dosztányi Z, Mészáros B, Simon I: ANCHOR: web server for predicting protein binding regions in disordered proteins. PubMed DOI PMC
Dunker AK, Silman I, Uversky VN, et al. : Function and structure of inherently disordered proteins. PubMed DOI
Durinx C, McEntyre J, Appel R, et al. : Identifying ELIXIR core data resources [version 2; peer review: 2 approved]. PubMed DOI PMC
Dyson HJ, Wright PE: How do intrinsically disordered viral proteins hijack the cell? PubMed DOI PMC
Dyson HJ, Wright PE: Intrinsically unstructured proteins and their functions. PubMed DOI
Edwards RJ, Palopoli N: Computational prediction of short linear motifs from protein sequences. PubMed DOI
Felli IC, Pierattelli R: Intrinsically Disordered Proteins Studied by NMR Spectroscopy.Springer.2015. 10.1007/978-3-319-20164-1 DOI
Forman-Kay JD, Mittag T: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. PubMed DOI PMC
Franke D, Petoukhov MV, Konarev PV, et al. : PubMed DOI PMC
Fuertes G, Banterle N, Ruff KM, et al. : Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. PubMed DOI PMC
Fuxreiter M: Fold or not to fold upon binding - does it really matter? PubMed DOI
Gibson TJ, Dinkel H, Van Roey K, et al. : Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. PubMed DOI PMC
Gouw M, Michael S, Sámano-Sánchez H, et al. : The eukaryotic linear motif resource - 2018 update. PubMed DOI PMC
Guharoy M, Bhowmick P, Sallam M, et al. : Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. PubMed DOI PMC
Hess B, Kutzner C, van der Spoel D, et al. : GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. PubMed DOI
Holehouse AS, Pappu RV: Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. PubMed DOI PMC
Holmstrom ED, Holla A, Zheng W, et al. : Accurate Transfer Efficiencies, Distance Distributions, and Ensembles of Unfolded and Intrinsically Disordered Proteins From Single-Molecule FRET. PubMed DOI PMC
Huang J, MacKerell AD, Jr: Force field development and simulations of intrinsically disordered proteins. PubMed DOI PMC
Iakoucheva LM, Radivojac P, Brown CJ, et al. : The importance of intrinsic disorder for protein phosphorylation. PubMed DOI PMC
Iešmantavicius V, Dogan J, Jemth P, et al. : Helical propensity in an intrinsically disordered protein accelerates ligand binding. PubMed DOI
Ivarsson Y, Jemth P: Affinity and specificity of motif-based protein-protein interactions. PubMed DOI
Kriwacki RW, Hengst L, Tennant L, et al. : Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. PubMed DOI PMC
Kruse T, Biedenkopf N, Hertz EPT, et al. : The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. PubMed DOI
Krystkowiak I, Davey NE: SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. PubMed DOI PMC
Light S, Sagit R, Sachenkova O, et al. : Protein expansion is primarily due to indels in intrinsically disordered regions. PubMed DOI
Martin EW, Mittag T: Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. PubMed DOI PMC
Mészáros B, Kumar M, Gibson TJ, et al. : Degrons in cancer. PubMed DOI
Milles S, Salvi N, Blackledge M, et al. : Characterization of intrinsically disordered proteins and their dynamic complexes: From PubMed DOI
Mir S, Alhroub Y, Anyango S, et al. : PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. PubMed DOI PMC
Mitrea DM, Kriwacki RW: Phase separation in biology; functional organization of a higher order. PubMed DOI PMC
Mottin L, Pasche E, Gobeill J, et al. : Triage by ranking to support the curation of protein interaction. PubMed DOI PMC
Mottin L, Pasche E, Gobeill J, et al. : Triage by ranking to support the curation of protein interactions. PubMed DOI PMC
Necci M, Piovesan D, Dosztányi Z, et al. : MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. PubMed DOI
Neduva V, Russell RB: DILIMOT: discovery of linear motifs in proteins. PubMed DOI PMC
Nguyen HQ, Baxter BC, Brower K, et al. : Programmable Microfluidic Synthesis of Over One Thousand Uniquely Identifiable Spectral Codes. PubMed DOI PMC
Nielsen JT, Mulder FAA: There is Diversity in Disorder-"In all Chaos there is a Cosmos, in all Disorder a Secret Order". PubMed DOI PMC
Nodet G, Salmon L, Ozenne V, et al. : Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. PubMed DOI
Oates ME, Romero P, Ishida T, et al. : D PubMed DOI PMC
Olsen JG, Teilum K, Kragelund BB: Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness. PubMed DOI PMC
Orchard S, Ammari M, Aranda B, et al. : The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. PubMed DOI PMC
Orchard S, Kerrien S, Abbani S, et al. : Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. PubMed DOI PMC
Ozenne V, Bauer F, Salmon L, et al. : PubMed DOI
Pancsa R, Tompa P: Structural disorder in eukaryotes. PubMed DOI PMC
Peng Y, Cao S, Kiselar J, et al. : A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. PubMed DOI PMC
Piovesan D, Tabaro F, Mičetić I, et al. : DisProt 7.0: a major update of the database of disordered proteins. PubMed DOI PMC
Piovesan D, Tabaro F, Paladin L, et al. : MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. PubMed DOI PMC
Plitzko JM, Schuler B, Selenko P: Structural Biology outside the box-inside the cell. PubMed DOI
Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. : FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. PubMed DOI
Raveh B, London N, Zimmerman L, et al. : Rosetta FlexPepDock PubMed DOI PMC
Santofimia-Castaño P, Xia Y, Lan W, et al. : Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. PubMed DOI PMC
Schad E, Fichó E, Pancsa R, et al. : DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. PubMed DOI PMC
Schuler B, Soranno A, Hofmann H, et al. : Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. PubMed DOI
Scott JD, Pawson T: Cell signaling in space and time: where proteins come together and when they’re apart. PubMed DOI PMC
Shigemitsu Y, Hiroaki H: Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis. PubMed DOI
Shoemaker BA, Portman JJ, Wolynes PG: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. PubMed DOI PMC
Sickmeier M, Hamilton JA, LeGall T, et al. : DisProt: the Database of Disordered Proteins. PubMed DOI PMC
Sivade Dumousseau M, Alonso-López D, Ammari M, et al. : Encompassing new use cases - level 3.0 of the HUPO-PSI format for molecular interactions. PubMed DOI PMC
Stanley N, Esteban-Martín S, De Fabritiis G: Progress in studying intrinsically disordered proteins with atomistic simulations. PubMed DOI
Tamiola K, Mulder FA: Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. PubMed DOI
Tolchard J, Walpole SJ, Miles AJ, et al. : The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix. PubMed DOI PMC
Tompa P: The interplay between structure and function in intrinsically unstructured proteins. PubMed DOI
Tompa P: Unstructural biology coming of age. PubMed DOI
Tompa P, Davey NE, Gibson TJ, et al. : A million peptide motifs for the molecular biologist. PubMed DOI
Trabuco LG, Lise S, Petsalaki E, et al. : PepSite: prediction of peptide-binding sites from protein surfaces. PubMed DOI PMC
Tribello GA, Bonomi M, Branduardi D, et al. : PLUMED2: New feathers for an old bird. DOI
Ulrich EL, Akutsu H, Doreleijers JF, et al. : BioMagResBank. PubMed DOI PMC
UniProt Consortium: UniProt: a worldwide hub of protein knowledge. PubMed DOI PMC
Uversky VN, Oldfield CJ, Dunker AK: Intrinsically disordered proteins in human diseases: introducing the D PubMed DOI
Valentini E, Kikhney AG, Previtali G, et al. : SASBDB, a repository for biological small-angle scattering data. PubMed DOI PMC
Vallat B, Webb B, Westbrook JD, et al. : Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules. PubMed DOI PMC
van der Lee R, Buljan M, Lang B, et al. : Classification of intrinsically disordered regions and proteins. PubMed DOI PMC
Van Roey K, Dinkel H, Weatheritt RJ, et al. : The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. PubMed DOI
Van Roey K, Gibson TJ, Davey NE: Motif switches: decision-making in cell regulation. PubMed DOI
Van Roey K, Uyar B, Weatheritt RJ, et al. : Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. PubMed DOI
Varadi M, Kosol S, Lebrun P, et al. : pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. PubMed DOI PMC
Via A, Uyar B, Brun C, et al. : How pathogens use linear motifs to perturb host cell networks. PubMed DOI
Volkmer R: Synthesis and application of peptide arrays: quo vadis SPOT technology. PubMed DOI
Walsh I, Martin AJ, Di Domenico T, et al. : ESpritz: accurate and fast prediction of protein disorder. PubMed DOI
Weatheritt RJ, Davey NE, Gibson TJ: Linear motifs confer functional diversity onto splice variants. PubMed DOI PMC
Weatheritt RJ, Gibson TJ: Linear motifs: lost in (pre)translation. PubMed DOI
Whitmore L, Miles AJ, Mavridis L, et al. : PCDDB: new developments at the Protein Circular Dichroism Data Bank. PubMed DOI PMC
Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. : The FAIR Guiding Principles for scientific data management and stewardship. PubMed DOI PMC
Wright PE, Dyson HJ: Intrinsically disordered proteins in cellular signalling and regulation. PubMed DOI PMC
Xue B, Dunker AK, Uversky VN: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. PubMed DOI
Xue B, Mizianty MJ, Kurgan L, et al. : Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. PubMed DOI PMC
Yu C, Niu X, Jin F, et al. : Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc. PubMed DOI PMC
DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation