An intrinsically disordered proteins community for ELIXIR

. 2019 ; 8 () : . [epub] 20191015

Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31824649

Grantová podpora
Wellcome Trust - United Kingdom
MC_U105185859 Medical Research Council - United Kingdom
U24 HG007822 NHGRI NIH HHS - United States

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.

BCPL CPERI Centre for Research and Technology Hellas Thessalonica 57001 Greece

Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Nicosia CY 1678 Cyprus

Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona 08003 Spain

Computational Biology Laboratory Danish Cancer Society Research Center Copenhagen 2100 Denmark

Conway Institute of Biomolecular and Biomedical Research University College Dublin Belfield Dublin D4 Ireland

Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Stockholm Sweden

Department of Biochemistry Cardiovascular Research Institute Maastricht Maastricht University Maastricht The Netherlands

Department of Biochemistry Eötvös Loránd University Budapest H 1117 Hungary

Department of Biochemistry University of Zurich Zurich Switzerland

Department of Biomedical Sciences University of Padua Padua Italy

Department of Chemistry and CERM Ugo Schiff University of Florence Florence Italy

Department of Genetics University of Cambridge Cambridge CB2 3EH UK

Department of Structural Biology and the Israel Structural Proteomics Center Weizmann Institute of Science Reḥovot 7610001 Israel

Division of Cancer Biology Institute of Cancer Research UK London SW3 6JB UK

ELIXIR Hub Wellcome Genome Campus Cambridge CB10 1SD UK

European Bioinformatics Institute European Molecular Biology Laboratory Cambridge CB10 1SD UK

European Molecular Biology Laboratory Hamburg Germany

Faculty of Medicine Medizinisches Proteom Center Ruhr University Bochum GesundheitsCampus 4 Bochum 44801 Germany

HES SO HEG and SIB Text Mining Swiss Institute of Bioinformatics Geneva Switzerland

Institut de Biologie Structurale Université Grenoble Alpes Grenoble 38000 France

Institute of Enzymology Research Centre for Natural Sciences of the Hungarian Academy of Sciences Budapest H 1117 Hungary

Institute of Organic Chemistry and Biochemistry CAS Prague Czech Republic

Institute of Structural and Molecular Biology Birkbeck College University of London London WC1H 0HA UK

Life Sciences Department Barcelona Supercomputing Center Barcelona Spain

MRC Laboratory of Molecular Biology Cambridge CB2 0QH UK

Protein Data Bank in Europe European Bioinformatics Institute European Molecular Biology Laboratory Cambridge CB10 1SD UK

School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW Australia

Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany

Swiss Prot Group SIB Swiss Institute of Bioinformatics Geneva Switzerland

Universitat Pompeu Fabra Barcelona Spain

University of Wisconsin Madison Madison WI 53706 1544 USA

VIB Center for Structural Biology VIB Flemish Institute for Biotechnology Brussels 1050 Belgium

VUB ULB Interuniversity Institute of Bioinformatics in Brussels and Structural Biology Brussels Vrije Universiteit Brussel Brussels B 1050 Belgium

Zobrazit více v PubMed

Babu MM, Kriwacki RW, Pappu RV: Structural biology. Versatility from protein disorder. Science. 2012;337(6101):1460–1461. 10.1126/science.1228775 PubMed DOI

Baggett DW, Nath A: The Rational Discovery of a Tau Aggregation Inhibitor. Biochemistry. 2018;57(42):6099–6107. 10.1021/acs.biochem.8b00581 PubMed DOI PMC

Bah A, Forman-Kay JD: Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem. 2016;291(13):6696–6705. 10.1074/jbc.R115.695056 PubMed DOI PMC

Beltrao P, Albanèse V, Kenner LR, et al. : Systematic functional prioritization of protein posttranslational modifications. Cell. 2012;150(2):413–425. 10.1016/j.cell.2012.05.036 PubMed DOI PMC

Bernadó P, Mylonas E, Petoukhov MV, et al. : Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 2007;129(17):5656–5664. 10.1021/ja069124n PubMed DOI

Best RB: Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol. 2017;42:147–154. 10.1016/j.sbi.2017.01.006 PubMed DOI

Blikstad C, Ivarsson Y: High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal. 2015;13:38. 10.1186/s12964-015-0116-8 PubMed DOI PMC

Bonetti D, Troilo F, Brunori M, et al. : How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein? Biophys J. 2018;114(8):1889–1894. 10.1016/j.bpj.2018.03.017 PubMed DOI PMC

Borgia A, Borgia MB, Bugge K, et al. : Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018;555(7694):61–66. 10.1038/nature25762 PubMed DOI PMC

Britan A, Cusin I, Hinard V, et al. : Accelerating annotation of articles via automated approaches: evaluation of the neXtA 5 curation-support tool by neXtProt. Database (Oxford). 2018;2018. 10.1093/database/bay129 PubMed DOI PMC

Buljan M, Chalancon G, Eustermann S, et al. : Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell. 2012;46(6):871–883. 10.1016/j.molcel.2012.05.039 PubMed DOI PMC

Camilloni C, De Simone A, Vranken WF, et al. : Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry. 2012;51(11):2224–2231. 10.1021/bi3001825 PubMed DOI

Chong SH, Chatterjee P, Ham S: Computer Simulations of Intrinsically Disordered Proteins. Annu Rev Phys Chem. 2017;68:117–134. 10.1146/annurev-physchem-052516-050843 PubMed DOI

Chouard T: Structural biology: Breaking the protein rules. Nature. 2011;471(7337):151–153. 10.1038/471151a PubMed DOI

Cilia E, Pancsa R, Tompa P, et al. : The DynaMine webserver: predicting protein dynamics from sequence. Nucleic Acids Res. 2014;42(Web Server issue):W264–70. 10.1093/nar/gku270 PubMed DOI PMC

Corbi-Verge C, Kim PM: Motif mediated protein-protein interactions as drug targets. Cell Commun Signal. 2016;14:8. 10.1186/s12964-016-0131-4 PubMed DOI PMC

Csizmok V, Forman-Kay JD: Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol. 2018;48:58–67. 10.1016/j.sbi.2017.10.013 PubMed DOI

Davey NE: The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol. 2019;56:155–163. 10.1016/j.sbi.2019.03.009 PubMed DOI

Davey NE, Cyert MS, Moses AM: Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal. 2015;13:43. 10.1186/s12964-015-0120-z PubMed DOI PMC

Davey NE, Morgan DO: Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell. 2016;64(1):12–23. 10.1016/j.molcel.2016.09.006 PubMed DOI PMC

Davey NE, Seo MH, Yadav VK, et al. : Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J. 2017;284(3):485–498. 10.1111/febs.13995 PubMed DOI

Davey NE, Travé G, Gibson TJ: How viruses hijack cell regulation. Trends Biochem Sci. 2011;36(3):159–169. 10.1016/j.tibs.2010.10.002 PubMed DOI

Dosztányi Z, Csizmók V, Tompa P, et al. : The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol. 2005;347(4):827–839. 10.1016/j.jmb.2005.01.071 PubMed DOI

Dosztányi Z, Mészáros B, Simon I: ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics. 2009;25(20):2745–2746. 10.1093/bioinformatics/btp518 PubMed DOI PMC

Dunker AK, Silman I, Uversky VN, et al. : Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18(6):756–64. 10.1016/j.sbi.2008.10.002 PubMed DOI

Durinx C, McEntyre J, Appel R, et al. : Identifying ELIXIR core data resources [version 2; peer review: 2 approved]. F1000Res. 2016;5: pii: ELIXIR-2422. 10.12688/f1000research.9656.2 PubMed DOI PMC

Dyson HJ, Wright PE: How do intrinsically disordered viral proteins hijack the cell? Biochemistry. 2018;57(28):4045–4046. 10.1021/acs.biochem.8b00622 PubMed DOI PMC

Dyson HJ, Wright PE: Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6(3):197–208. 10.1038/nrm1589 PubMed DOI

Edwards RJ, Palopoli N: Computational prediction of short linear motifs from protein sequences. Methods Mol Biol. 2015;1268:89–141. 10.1007/978-1-4939-2285-7_6 PubMed DOI

Felli IC, Pierattelli R: Intrinsically Disordered Proteins Studied by NMR Spectroscopy.Springer.2015. 10.1007/978-3-319-20164-1 DOI

Forman-Kay JD, Mittag T: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure. 2013;21(9):1492–1499. 10.1016/j.str.2013.08.001 PubMed DOI PMC

Franke D, Petoukhov MV, Konarev PV, et al. : ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr. 2017;50(Pt 4):1212–1225. 10.1107/S1600576717007786 PubMed DOI PMC

Fuertes G, Banterle N, Ruff KM, et al. : Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A. 2017;114(31):E6342–E6351. 10.1073/pnas.1704692114 PubMed DOI PMC

Fuxreiter M: Fold or not to fold upon binding - does it really matter? Curr Opin Struct Biol. 2018;54:19–25. 10.1016/j.sbi.2018.09.008 PubMed DOI

Gibson TJ, Dinkel H, Van Roey K, et al. : Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal. 2015;13:42. 10.1186/s12964-015-0121-y PubMed DOI PMC

Gouw M, Michael S, Sámano-Sánchez H, et al. : The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res. 2018;46(D1):D428–D434. 10.1093/nar/gkx1077 PubMed DOI PMC

Guharoy M, Bhowmick P, Sallam M, et al. : Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat Commun. 2016;7: 10239. 10.1038/ncomms10239 PubMed DOI PMC

Hess B, Kutzner C, van der Spoel D, et al. : GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4(3):435–47. 10.1021/ct700301q PubMed DOI

Holehouse AS, Pappu RV: Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. Annu Rev Biophys. 2018;47:19–39. 10.1146/annurev-biophys-070317-032838 PubMed DOI PMC

Holmstrom ED, Holla A, Zheng W, et al. : Accurate Transfer Efficiencies, Distance Distributions, and Ensembles of Unfolded and Intrinsically Disordered Proteins From Single-Molecule FRET. Methods Enzymol. 2018;611:287–325. 10.1016/bs.mie.2018.09.030 PubMed DOI PMC

Huang J, MacKerell AD, Jr: Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol. 2018;48:40–48. 10.1016/j.sbi.2017.10.008 PubMed DOI PMC

Iakoucheva LM, Radivojac P, Brown CJ, et al. : The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004;32(3):1037–1049. 10.1093/nar/gkh253 PubMed DOI PMC

Iešmantavicius V, Dogan J, Jemth P, et al. : Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angew Chem Int Ed Engl. 2014;53(6):1548–1551. 10.1002/anie.201307712 PubMed DOI

Ivarsson Y, Jemth P: Affinity and specificity of motif-based protein-protein interactions. Curr Opin Struct Biol. 2019;54:26–33. 10.1016/j.sbi.2018.09.009 PubMed DOI

Kriwacki RW, Hengst L, Tennant L, et al. : Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci U S A. 1996;93(21):11504–11509. 10.1073/pnas.93.21.11504 PubMed DOI PMC

Kruse T, Biedenkopf N, Hertz EPT, et al. : The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Mol Cell. 2019;69(1):136–145.e6. 10.1016/j.molcel.2017.11.034 PubMed DOI

Krystkowiak I, Davey NE: SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res. 2017;45(W1):W464–W469. 10.1093/nar/gkx238 PubMed DOI PMC

Light S, Sagit R, Sachenkova O, et al. : Protein expansion is primarily due to indels in intrinsically disordered regions. Mol Biol Evol. 2013;30(12):2645–2653. 10.1093/molbev/mst157 PubMed DOI

Martin EW, Mittag T: Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry. 2018;57(17):2478–2487. 10.1021/acs.biochem.8b00008 PubMed DOI PMC

Mészáros B, Kumar M, Gibson TJ, et al. : Degrons in cancer. Sci Signal. 2017;10(470): pii: eaak9982. 10.1126/scisignal.aak9982 PubMed DOI

Milles S, Salvi N, Blackledge M, et al. : Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. Prog Nucl Magn Reson Spectrosc. 2018;109:79–100. 10.1016/j.pnmrs.2018.07.001 PubMed DOI

Mir S, Alhroub Y, Anyango S, et al. : PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res. 2018;46(D1):D486–D492. 10.1093/nar/gkx1070 PubMed DOI PMC

Mitrea DM, Kriwacki RW: Phase separation in biology; functional organization of a higher order. Cell Commun Signal. 2016;14:1. 10.1186/s12964-015-0125-7 PubMed DOI PMC

Mottin L, Pasche E, Gobeill J, et al. : Triage by ranking to support the curation of protein interaction. Database (Oxford). 2017;2017. 10.1093/database/bax040 PubMed DOI PMC

Mottin L, Pasche E, Gobeill J, et al. : Triage by ranking to support the curation of protein interactions. Database (Oxford). 2017;2017. 10.1093/database/bax040 PubMed DOI PMC

Necci M, Piovesan D, Dosztányi Z, et al. : MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics. 2017;33(9):1402–1404. 10.1093/bioinformatics/btx015 PubMed DOI

Neduva V, Russell RB: DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W350–5. 10.1093/nar/gkl159 PubMed DOI PMC

Nguyen HQ, Baxter BC, Brower K, et al. : Programmable Microfluidic Synthesis of Over One Thousand Uniquely Identifiable Spectral Codes. Adv Opt Mater. 2017;5(3): pii: 1600548. 10.1002/adom.201600548 PubMed DOI PMC

Nielsen JT, Mulder FAA: There is Diversity in Disorder-"In all Chaos there is a Cosmos, in all Disorder a Secret Order". Front Mol Biosci. 2016;3:4. 10.3389/fmolb.2016.00004 PubMed DOI PMC

Nodet G, Salmon L, Ozenne V, et al. : Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J Am Chem Soc. 2009;131(49):17908–17918. 10.1021/ja9069024 PubMed DOI

Oates ME, Romero P, Ishida T, et al. : D 2P 2: database of disordered protein predictions. Nucleic Acids Res. 2013;41(Database issue):D508–16. 10.1093/nar/gks1226 PubMed DOI PMC

Olsen JG, Teilum K, Kragelund BB: Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness. Cell Mol Life Sci. 2017;74(17):3175–3183. 10.1007/s00018-017-2560-7 PubMed DOI PMC

Orchard S, Ammari M, Aranda B, et al. : The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42(Database issue):D358–63. 10.1093/nar/gkt1115 PubMed DOI PMC

Orchard S, Kerrien S, Abbani S, et al. : Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods. 2012;9(4):345–350. 10.1038/nmeth.1931 PubMed DOI PMC

Ozenne V, Bauer F, Salmon L, et al. : Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics. 2012;28(11):1463–1470. 10.1093/bioinformatics/bts172 PubMed DOI

Pancsa R, Tompa P: Structural disorder in eukaryotes. PLoS One. 2012;7(4):e34687. 10.1371/journal.pone.0034687 PubMed DOI PMC

Peng Y, Cao S, Kiselar J, et al. : A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure. 2019;27(2):229–240.e4. 10.1016/j.str.2018.10.026 PubMed DOI PMC

Piovesan D, Tabaro F, Mičetić I, et al. : DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 2017;45(D1):D219–D227. 10.1093/nar/gkw1056 PubMed DOI PMC

Piovesan D, Tabaro F, Paladin L, et al. : MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 2018;46(D1):D471–D476. 10.1093/nar/gkx1071 PubMed DOI PMC

Plitzko JM, Schuler B, Selenko P: Structural Biology outside the box-inside the cell. Curr Opin Struct Biol. 2017;46: 110–121. 10.1016/j.sbi.2017.06.007 PubMed DOI

Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. : FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21(16):3435–3438. 10.1093/bioinformatics/bti537 PubMed DOI

Raveh B, London N, Zimmerman L, et al. : Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One. 2011;6(4):e18934. 10.1371/journal.pone.0018934 PubMed DOI PMC

Santofimia-Castaño P, Xia Y, Lan W, et al. : Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J Clin Invest. 2019;129(6):2500–2513. 10.1172/JCI127223 PubMed DOI PMC

Schad E, Fichó E, Pancsa R, et al. : DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics. 2018;34(3):535–537. 10.1093/bioinformatics/btx640 PubMed DOI PMC

Schuler B, Soranno A, Hofmann H, et al. : Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annu Rev Biophys. 2016;45:207–231. 10.1146/annurev-biophys-062215-010915 PubMed DOI

Scott JD, Pawson T: Cell signaling in space and time: where proteins come together and when they’re apart. Science. 2009;326(5957):1220–1224. 10.1126/science.1175668 PubMed DOI PMC

Shigemitsu Y, Hiroaki H: Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis. J Biochem. 2018;163(1):11–18. 10.1093/jb/mvx056 PubMed DOI

Shoemaker BA, Portman JJ, Wolynes PG: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A. 2000;97(16):8868–8873. 10.1073/pnas.160259697 PubMed DOI PMC

Sickmeier M, Hamilton JA, LeGall T, et al. : DisProt: the Database of Disordered Proteins. Nucleic Acids Res. 2007;35(Database issue):D786–93. 10.1093/nar/gkl893 PubMed DOI PMC

Sivade Dumousseau M, Alonso-López D, Ammari M, et al. : Encompassing new use cases - level 3.0 of the HUPO-PSI format for molecular interactions. BMC Bioinformatics. 2018;19(1):134. 10.1186/s12859-018-2118-1 PubMed DOI PMC

Stanley N, Esteban-Martín S, De Fabritiis G: Progress in studying intrinsically disordered proteins with atomistic simulations. Prog Biophys Mol Biol. 2015;119(1):47–52. 10.1016/j.pbiomolbio.2015.03.003 PubMed DOI

Tamiola K, Mulder FA: Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans. 2012;40(5):1014–1020. 10.1042/BST20120171 PubMed DOI

Tolchard J, Walpole SJ, Miles AJ, et al. : The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix. Sci Rep. 2018;8(1):1960. 10.1038/s41598-018-20290-8 PubMed DOI PMC

Tompa P: The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 2005;579(15):3346–3354. 10.1016/j.febslet.2005.03.072 PubMed DOI

Tompa P: Unstructural biology coming of age. Curr Opin Struct Biol. 2011;21(3):419–425. 10.1016/j.sbi.2011.03.012 PubMed DOI

Tompa P, Davey NE, Gibson TJ, et al. : A million peptide motifs for the molecular biologist. Mol Cell. 2014;55(2):161–169. 10.1016/j.molcel.2014.05.032 PubMed DOI

Trabuco LG, Lise S, Petsalaki E, et al. : PepSite: prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res. 2012;40(Web Server issue):W423–7. 10.1093/nar/gks398 PubMed DOI PMC

Tribello GA, Bonomi M, Branduardi D, et al. : PLUMED2: New feathers for an old bird. Comp Phys Comm. 2014;185(2):604–613. 10.1016/j.cpc.2013.09.018 DOI

Ulrich EL, Akutsu H, Doreleijers JF, et al. : BioMagResBank. Nucleic Acids Res. 2008;36(Database issue):D402–8. 10.1093/nar/gkm957 PubMed DOI PMC

UniProt Consortium: UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515. 10.1093/nar/gky1049 PubMed DOI PMC

Uversky VN, Oldfield CJ, Dunker AK: Intrinsically disordered proteins in human diseases: introducing the D 2 concept. Annu Rev Biophys. 2008;37:215–246. 10.1146/annurev.biophys.37.032807.125924 PubMed DOI

Valentini E, Kikhney AG, Previtali G, et al. : SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015;43(Database issue):D357–63. 10.1093/nar/gku1047 PubMed DOI PMC

Vallat B, Webb B, Westbrook JD, et al. : Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules. Structure. 2018;26(6):894–904.e2. 10.1016/j.str.2018.03.011 PubMed DOI PMC

van der Lee R, Buljan M, Lang B, et al. : Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–6631. 10.1021/cr400525m PubMed DOI PMC

Van Roey K, Dinkel H, Weatheritt RJ, et al. : The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal. 2013;6(269):rs7. 10.1126/scisignal.2003345 PubMed DOI

Van Roey K, Gibson TJ, Davey NE: Motif switches: decision-making in cell regulation. Curr Opin Struct Biol. 2012;22(3):378–385. 10.1016/j.sbi.2012.03.004 PubMed DOI

Van Roey K, Uyar B, Weatheritt RJ, et al. : Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev. 2014;114(13):6733–6778. 10.1021/cr400585q PubMed DOI

Varadi M, Kosol S, Lebrun P, et al. : pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res. 2014;42(Database issue):D326–35. 10.1093/nar/gkt960 PubMed DOI PMC

Via A, Uyar B, Brun C, et al. : How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci. 2015;40(1):36–48. 10.1016/j.tibs.2014.11.001 PubMed DOI

Volkmer R: Synthesis and application of peptide arrays: quo vadis SPOT technology. Chembiochem. 2009;10(9):1431–1442. 10.1002/cbic.200900078 PubMed DOI

Walsh I, Martin AJ, Di Domenico T, et al. : ESpritz: accurate and fast prediction of protein disorder. Bioinformatics. 2012;28(4):503–509. 10.1093/bioinformatics/btr682 PubMed DOI

Weatheritt RJ, Davey NE, Gibson TJ: Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res. 2012;40(15): 7123–7131. 10.1093/nar/gks442 PubMed DOI PMC

Weatheritt RJ, Gibson TJ: Linear motifs: lost in (pre)translation. Trends Biochem Sci. 2012;37(8):333–341. 10.1016/j.tibs.2012.05.001 PubMed DOI

Whitmore L, Miles AJ, Mavridis L, et al. : PCDDB: new developments at the Protein Circular Dichroism Data Bank. Nucleic Acids Res. 2017;45(D1):D303–D307. 10.1093/nar/gkw796 PubMed DOI PMC

Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. : The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18 PubMed DOI PMC

Wright PE, Dyson HJ: Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol. 2015;16(1):18–29. 10.1038/nrm3920 PubMed DOI PMC

Xue B, Dunker AK, Uversky VN: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn. 2012;30(2):137–149. 10.1080/07391102.2012.675145 PubMed DOI

Xue B, Mizianty MJ, Kurgan L, et al. : Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci. 2012;69(8):1211–1259. 10.1007/s00018-011-0859-3 PubMed DOI PMC

Yu C, Niu X, Jin F, et al. : Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc. Sci Rep. 2016;6:22298. 10.1038/srep22298 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation

. 2022 Jan 07 ; 50 (D1) : D480-D487.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...