DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation

. 2022 Jan 07 ; 50 (D1) : D480-D487.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34850135

Grantová podpora
28159 Cancer Research UK - United Kingdom
U24 HG012212 NHGRI NIH HHS - United States
U41 HG002273 NHGRI NIH HHS - United States
C68484/A28159 Cancer Research UK - United Kingdom

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.

Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Nicosia Cyprus

Bioinformatics Unit Fundación Instituto Leloir Buenos Aires C1405BWE Argentina

Biological Computation and Computational Biology Group Artificial Intelligence and Information Analysis Lab Department of Computer Science Aristotle University of Thessalonica Thessalonica 54124 Greece

Biological Computation and Process Laboratory Chemical Process and Energy Resources Institute Centre for Research and Technology Hellas Thermi Thessalonica 57001 Greece

Cancer Structural Biology Danish Cancer Society Research Center Strandboulevarden 49 2100 Copenhagen Denmark

Cancer Systems Biology Section for Bioinformatics Department of Health and Technology Technical University of Denmark Lyngby Denmark

Cytocast Kft Vecsés Hungary

Dep of Cell Biology Faculty of Science Vinicna 7 128 43 Prague Czech Republic

Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona Barcelona Spain

Departamento de Ciencia y Tecnología Universidad Nacional de Quilmes CONICET Bernal Buenos Aires B1876BXD Argentina

Department of Biochemistry Eötvös Loránd University Pázmány Péter stny 1 c Budapest H 1117 Hungary

Department of Biomedical Sciences University of Padova Padova Italy

Department of Cell Biology Faculty of Science Charles University BIOCEV Prague Czech Republic

Department of Woman and Child Health University of Padova Padova Italy

European Molecular Biology Laboratory European Bioinformatics Institute Wellcome Genome Campus Hinxton UK

Faculty of Information Technology and Bionics Pázmány Péter Catholic University Práter u 50 A 1083 Budapest Hungary

ICREA Barcelona Spain

Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Barcelona Spain

Institute for Genome Sciences University of Maryland School of Medicine 670 W Baltimore St Baltimore MD 21201 USA

Institute of Biomembranes Bioenergetics and Molecular Biotechnologies National Research Council Bari Italy

Institute of Cancer Research Chester Beatty Laboratories 237 Fulham Rd Chelsea London UK

Institute of Enzymology Research Centre for Natural Sciences Budapest 1117 Hungary

Instituto de Biologia Molecular e Celular Universidade do Porto 4200 135 Porto Portugal

Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200 135 Porto Portugal

Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín Av 25 de Mayo y Francia CP1650 Buenos Aires Argentina

Lab Architecture et Fonction des Macromolécules Biologiques 163 Avenue de Luminy Case 932 13288 Marseille France

Laboratory for Bioinformatics and Computational Chemistry Vinča Institute of Nuclear Sciences National Institute of the Republic of Serbia University of Belgrade 11000Belgrade Serbia

Pediatric Research Institute Città della Speranza Padova Italy

Science for Life Laboratory Department of Biochemistry and Biophysics Stockholm University 171 21 Solna Sweden

Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg 69117 Germany

Structural Biology Brussels Brussels Belgium

Swiss Prot group SIB Swiss Institute of Bioinformatics Geneva Switzerland

VIB VUB Center for Structural Biology Vlaams Instituut voor Biotechnology Brussels Belgium

Zobrazit více v PubMed

Romero P., Obradovic Z., Kissinger C.R., Villafranca J.E., Garner E., Guilliot S., Dunker A.K.. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 1998; 1998:437–448. PubMed

Wright P.E., Dyson H.J.. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015; 16:18–29. PubMed PMC

van der Lee R., Buljan M., Lang B., Weatheritt R.J., Daughdrill G.W., Dunker A.K., Fuxreiter M., Gough J., Gsponer J., Jones D.T.et al. .. Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014; 114:6589–6631. PubMed PMC

Necci M., Piovesan D., Predictors C., Curators D.P., Tosatto S.C.E.. Critical assessment of protein intrinsic disorder prediction. Nat. Methods. 2021; 18:472–481. PubMed PMC

Hu G., Katuwawala A., Wang K., Wu Z., Ghadermarzi S., Gao J., Kurgan L.. flDPnn: accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat. Commun. 2021; 12:4438. PubMed PMC

Hanson J., Paliwal K.K., Litfin T., Zhou Y.. SPOT-Disorder2: improved protein intrinsic disorder prediction by ensembled deep learning. Genomics Proteomics Bioinformatics. 2019; 17:645–656. PubMed PMC

Oberti M., Vaisman I.I.. cnnAlpha: protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks. Proteins. 2020; 88:1472–1481. PubMed

Mészáros B., Erdős G., Dosztányi Z.. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic. Acids. Res. 2018; 46:W329–W337. PubMed PMC

Kumar M., Gouw M., Michael S., Sámano-Sánchez H., Pancsa R., Glavina J., Diakogianni A., Valverde J.A., Bukirova D., Čalyševa J.et al. .. ELM—the eukaryotic linear motif resource in 2020. Nucleic. Acids. Res. 2020; 48:D296–D306. PubMed PMC

Miskei M., Antal C., Fuxreiter M.. FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res. 2017; 45:D228–D235. PubMed PMC

Borgia A., Borgia M.B., Bugge K., Kissling V.M., Heidarsson P.O., Fernandes C.B., Sottini A., Soranno A., Buholzer K.J., Nettels D.et al. .. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018; 555:61–66. PubMed PMC

Lazar T., Martínez-Pérez E., Quaglia F., Hatos A., Chemes L.B., Iserte J.A., Méndez N.A., Garrone N.A., Saldaño T.E., Marchetti J.et al. .. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 2021; 49:D404–D411. PubMed PMC

Quaglia F., Hatos A., Piovesan D., Tosatto S.C.E.. Exploring manually curated annotations of intrinsically disordered proteins with disprot. Curr. Protoc. Bioinforma. 2020; 72:e107. PubMed

Piovesan D., Necci M., Escobedo N., Monzon A.M., Hatos A., Mičetić I., Quaglia F., Paladin L., Ramasamy P., Dosztányi Z.et al. .. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 2021; 49:D361–D367. PubMed PMC

UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019; 47:D506–D515. PubMed PMC

PDBe-KB consortium PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Res. 2020; 48:D344–D353. PubMed PMC

Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P.M.G.E., Grigoras I.T., Malinauskaite L., Malinauskas T., Miehling J.et al. .. Single-particle cryo-EM at atomic resolution. Nature. 2020; 587:152–156. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A.et al. .. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC

Pereira J., Simpkin A.J., Hartmann M.D., Rigden D.J., Keegan R.M., Lupas A.N.. High-accuracy protein structure prediction in CASP14. Proteins Struct. Funct. Bioinforma. 2021; 10.1002/prot.26171. PubMed DOI

Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., Bridgland A., Cowie A., Meyer C., Laydon A.et al. .. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596:590–596. PubMed PMC

Pancsa R., Tompa P.. Structural disorder in eukaryotes. PLoS One. 2012; 7:e34687. PubMed PMC

Bhowmick A., Brookes D.H., Yost S.R., Dyson H.J., Forman-Kay J.D., Gunter D., Head-Gordon M., Hura G.L., Pande V.S., Wemmer D.E.et al. .. Finding our way in the dark proteome. J. Am. Chem. Soc. 2016; 138:9730–9742. PubMed PMC

Ruan H., Sun Q., Zhang W., Liu Y., Lai L.. Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov. Today. 2019; 24:217–227. PubMed

Santofimia-Castaño P., Rizzuti B., Xia Y., Abian O., Peng L., Velázquez-Campoy A., Neira J.L., Iovanna J.. Targeting intrinsically disordered proteins involved in cancer. Cell. Mol. Life Sci. CMLS. 2020; 77:1695–1707. PubMed PMC

Boike L., Cioffi A.G., Majewski F.C., Co J., Henning N.J., Jones M.D., Liu G., McKenna J.M., Tallarico J.A., Schirle M.et al. .. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 2021; 28:4–13. PubMed PMC

Ban F., Leblanc E., Cavga A.D., Huang C.-C.F., Flory M.R., Zhang F., Chang M.E.K., Morin H., Lallous N., Singh K.et al. .. Development of an androgen receptor inhibitor targeting the N-Terminal domain of androgen receptor for treatment of castration resistant prostate cancer. Cancers. 2021; 13:3488. PubMed PMC

Tóth G., Neumann T., Berthet A., Masliah E., Spencer B., Tao J., Jobling M.F., Gardai S.J., Bertoncini C.W., Cremades N.et al. .. Novel small molecules targeting the intrinsically disordered structural ensemble of α-synuclein protect against diverse α-synuclein mediated dysfunctions. Sci. Rep. 2019; 9:16947. PubMed PMC

Mathieu C., Pappu R.V., Taylor J.P.. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science. 2020; 370:56–60. PubMed PMC

Cai D., Liu Z., Lippincott-Schwartz J.. Biomolecular condensates and their links to cancer progression. Trends Biochem. Sci. 2021; 46:535–549. PubMed

Hatos A., Hajdu-Soltész B., Monzon A.M., Palopoli N., Álvarez L., Aykac-Fas B., Bassot C., Benítez G.I., Bevilacqua M., Chasapi A.et al. .. DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res. 2020; 48:D269–D276. PubMed PMC

Hatos A., Quaglia F., Piovesan D., Tosatto S.C.E.. APICURON: a database to credit and acknowledge the work of biocurators. Database J. Biol. Databases Curation. 2021; 2021:baab019. PubMed PMC

Duan Y., DeKeyser J.G., Damodaran S., Greaser M.L.. Studies on titin PEVK peptides and their interaction. Arch. Biochem. Biophys. 2006; 454:16–25. PubMed PMC

Necci M., Piovesan D., Clementel D., Dosztányi Z., Tosatto S.C.E.. MobiDB-lite 3.0: fast consensus annotation of intrinsic disorder flavors in proteins. Bioinformatics. 2020; 36:5533–5534. PubMed

Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., Oldfield C.J., Campen A.M., Ratliff C.M., Hipps K.W.et al. .. Intrinsically disordered protein. J. Mol. Graph. Model. 2001; 19:26–59. PubMed

Necci M., Piovesan D., Tosatto S.C.E.. Where differences resemble: sequence-feature analysis in curated databases of intrinsically disordered proteins. Database J. Biol. Databases Curation. 2018; 2018:bay127. PubMed PMC

Giglio M., Tauber R., Nadendla S., Munro J., Olley D., Ball S., Mitraka E., Schriml L.M., Gaudet P., Hobbs E.T.et al. .. ECO, the Evidence & Conclusion Ontology: community standard for evidence information. Nucleic Acids Res. 2019; 47:D1186–D1194. PubMed PMC

Gene Ontology Consortium The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021; 49:D325–D334. PubMed PMC

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T.et al. .. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000; 25:25–29. PubMed PMC

Binns D., Dimmer E., Huntley R., Barrell D., O’Donovan C., Apweiler R.. QuickGO: a web-based tool for Gene Ontology searching. Bioinforma. Oxf. Engl. 2009; 25:3045–3046. PubMed PMC

Davey N.E., Babu M.M., Blackledge M., Bridge A., Capella-Gutierrez S., Dosztanyi Z., Drysdale R., Edwards R.J., Elofsson A., Felli I.C.et al. .. An intrinsically disordered proteins community for ELIXIR. F1000Research. 2019; 8:1753. PubMed PMC

Gray A.J.G., Papadopoulos P., Mičetić I., Hatos A.. Exploiting bioschemas markup to populate IDPcentral. BioHackrXiv. 2021; 10.37044/osf.io/v3jct. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...