DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
28159
Cancer Research UK - United Kingdom
U24 HG012212
NHGRI NIH HHS - United States
U41 HG002273
NHGRI NIH HHS - United States
C68484/A28159
Cancer Research UK - United Kingdom
PubMed
34850135
PubMed Central
PMC8728214
DOI
10.1093/nar/gkab1082
PII: 6439667
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence * MeSH
- databáze proteinů * MeSH
- datové soubory jako téma MeSH
- DNA genetika metabolismus MeSH
- genová ontologie MeSH
- internet MeSH
- lidé MeSH
- RNA genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- software * MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
- vnitřně neuspořádané proteiny MeSH
The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.
Bioinformatics Unit Fundación Instituto Leloir Buenos Aires C1405BWE Argentina
Dep of Cell Biology Faculty of Science Vinicna 7 128 43 Prague Czech Republic
Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona Barcelona Spain
Department of Biochemistry Eötvös Loránd University Pázmány Péter stny 1 c Budapest H 1117 Hungary
Department of Biomedical Sciences University of Padova Padova Italy
Department of Cell Biology Faculty of Science Charles University BIOCEV Prague Czech Republic
Department of Woman and Child Health University of Padova Padova Italy
Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Barcelona Spain
Institute of Cancer Research Chester Beatty Laboratories 237 Fulham Rd Chelsea London UK
Institute of Enzymology Research Centre for Natural Sciences Budapest 1117 Hungary
Instituto de Biologia Molecular e Celular Universidade do Porto 4200 135 Porto Portugal
Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200 135 Porto Portugal
Pediatric Research Institute Città della Speranza Padova Italy
Structural Biology Brussels Brussels Belgium
Swiss Prot group SIB Swiss Institute of Bioinformatics Geneva Switzerland
VIB VUB Center for Structural Biology Vlaams Instituut voor Biotechnology Brussels Belgium
Zobrazit více v PubMed
Romero P., Obradovic Z., Kissinger C.R., Villafranca J.E., Garner E., Guilliot S., Dunker A.K.. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 1998; 1998:437–448. PubMed
Wright P.E., Dyson H.J.. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015; 16:18–29. PubMed PMC
van der Lee R., Buljan M., Lang B., Weatheritt R.J., Daughdrill G.W., Dunker A.K., Fuxreiter M., Gough J., Gsponer J., Jones D.T.et al. .. Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014; 114:6589–6631. PubMed PMC
Necci M., Piovesan D., Predictors C., Curators D.P., Tosatto S.C.E.. Critical assessment of protein intrinsic disorder prediction. Nat. Methods. 2021; 18:472–481. PubMed PMC
Hu G., Katuwawala A., Wang K., Wu Z., Ghadermarzi S., Gao J., Kurgan L.. flDPnn: accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat. Commun. 2021; 12:4438. PubMed PMC
Hanson J., Paliwal K.K., Litfin T., Zhou Y.. SPOT-Disorder2: improved protein intrinsic disorder prediction by ensembled deep learning. Genomics Proteomics Bioinformatics. 2019; 17:645–656. PubMed PMC
Oberti M., Vaisman I.I.. cnnAlpha: protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks. Proteins. 2020; 88:1472–1481. PubMed
Mészáros B., Erdős G., Dosztányi Z.. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic. Acids. Res. 2018; 46:W329–W337. PubMed PMC
Kumar M., Gouw M., Michael S., Sámano-Sánchez H., Pancsa R., Glavina J., Diakogianni A., Valverde J.A., Bukirova D., Čalyševa J.et al. .. ELM—the eukaryotic linear motif resource in 2020. Nucleic. Acids. Res. 2020; 48:D296–D306. PubMed PMC
Miskei M., Antal C., Fuxreiter M.. FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res. 2017; 45:D228–D235. PubMed PMC
Borgia A., Borgia M.B., Bugge K., Kissling V.M., Heidarsson P.O., Fernandes C.B., Sottini A., Soranno A., Buholzer K.J., Nettels D.et al. .. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018; 555:61–66. PubMed PMC
Lazar T., Martínez-Pérez E., Quaglia F., Hatos A., Chemes L.B., Iserte J.A., Méndez N.A., Garrone N.A., Saldaño T.E., Marchetti J.et al. .. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 2021; 49:D404–D411. PubMed PMC
Quaglia F., Hatos A., Piovesan D., Tosatto S.C.E.. Exploring manually curated annotations of intrinsically disordered proteins with disprot. Curr. Protoc. Bioinforma. 2020; 72:e107. PubMed
Piovesan D., Necci M., Escobedo N., Monzon A.M., Hatos A., Mičetić I., Quaglia F., Paladin L., Ramasamy P., Dosztányi Z.et al. .. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 2021; 49:D361–D367. PubMed PMC
UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019; 47:D506–D515. PubMed PMC
PDBe-KB consortium PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Res. 2020; 48:D344–D353. PubMed PMC
Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P.M.G.E., Grigoras I.T., Malinauskaite L., Malinauskas T., Miehling J.et al. .. Single-particle cryo-EM at atomic resolution. Nature. 2020; 587:152–156. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A.et al. .. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Pereira J., Simpkin A.J., Hartmann M.D., Rigden D.J., Keegan R.M., Lupas A.N.. High-accuracy protein structure prediction in CASP14. Proteins Struct. Funct. Bioinforma. 2021; 10.1002/prot.26171. PubMed DOI
Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., Bridgland A., Cowie A., Meyer C., Laydon A.et al. .. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596:590–596. PubMed PMC
Pancsa R., Tompa P.. Structural disorder in eukaryotes. PLoS One. 2012; 7:e34687. PubMed PMC
Bhowmick A., Brookes D.H., Yost S.R., Dyson H.J., Forman-Kay J.D., Gunter D., Head-Gordon M., Hura G.L., Pande V.S., Wemmer D.E.et al. .. Finding our way in the dark proteome. J. Am. Chem. Soc. 2016; 138:9730–9742. PubMed PMC
Ruan H., Sun Q., Zhang W., Liu Y., Lai L.. Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov. Today. 2019; 24:217–227. PubMed
Santofimia-Castaño P., Rizzuti B., Xia Y., Abian O., Peng L., Velázquez-Campoy A., Neira J.L., Iovanna J.. Targeting intrinsically disordered proteins involved in cancer. Cell. Mol. Life Sci. CMLS. 2020; 77:1695–1707. PubMed PMC
Boike L., Cioffi A.G., Majewski F.C., Co J., Henning N.J., Jones M.D., Liu G., McKenna J.M., Tallarico J.A., Schirle M.et al. .. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 2021; 28:4–13. PubMed PMC
Ban F., Leblanc E., Cavga A.D., Huang C.-C.F., Flory M.R., Zhang F., Chang M.E.K., Morin H., Lallous N., Singh K.et al. .. Development of an androgen receptor inhibitor targeting the N-Terminal domain of androgen receptor for treatment of castration resistant prostate cancer. Cancers. 2021; 13:3488. PubMed PMC
Tóth G., Neumann T., Berthet A., Masliah E., Spencer B., Tao J., Jobling M.F., Gardai S.J., Bertoncini C.W., Cremades N.et al. .. Novel small molecules targeting the intrinsically disordered structural ensemble of α-synuclein protect against diverse α-synuclein mediated dysfunctions. Sci. Rep. 2019; 9:16947. PubMed PMC
Mathieu C., Pappu R.V., Taylor J.P.. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science. 2020; 370:56–60. PubMed PMC
Cai D., Liu Z., Lippincott-Schwartz J.. Biomolecular condensates and their links to cancer progression. Trends Biochem. Sci. 2021; 46:535–549. PubMed
Hatos A., Hajdu-Soltész B., Monzon A.M., Palopoli N., Álvarez L., Aykac-Fas B., Bassot C., Benítez G.I., Bevilacqua M., Chasapi A.et al. .. DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res. 2020; 48:D269–D276. PubMed PMC
Hatos A., Quaglia F., Piovesan D., Tosatto S.C.E.. APICURON: a database to credit and acknowledge the work of biocurators. Database J. Biol. Databases Curation. 2021; 2021:baab019. PubMed PMC
Duan Y., DeKeyser J.G., Damodaran S., Greaser M.L.. Studies on titin PEVK peptides and their interaction. Arch. Biochem. Biophys. 2006; 454:16–25. PubMed PMC
Necci M., Piovesan D., Clementel D., Dosztányi Z., Tosatto S.C.E.. MobiDB-lite 3.0: fast consensus annotation of intrinsic disorder flavors in proteins. Bioinformatics. 2020; 36:5533–5534. PubMed
Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., Oldfield C.J., Campen A.M., Ratliff C.M., Hipps K.W.et al. .. Intrinsically disordered protein. J. Mol. Graph. Model. 2001; 19:26–59. PubMed
Necci M., Piovesan D., Tosatto S.C.E.. Where differences resemble: sequence-feature analysis in curated databases of intrinsically disordered proteins. Database J. Biol. Databases Curation. 2018; 2018:bay127. PubMed PMC
Giglio M., Tauber R., Nadendla S., Munro J., Olley D., Ball S., Mitraka E., Schriml L.M., Gaudet P., Hobbs E.T.et al. .. ECO, the Evidence & Conclusion Ontology: community standard for evidence information. Nucleic Acids Res. 2019; 47:D1186–D1194. PubMed PMC
Gene Ontology Consortium The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021; 49:D325–D334. PubMed PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T.et al. .. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000; 25:25–29. PubMed PMC
Binns D., Dimmer E., Huntley R., Barrell D., O’Donovan C., Apweiler R.. QuickGO: a web-based tool for Gene Ontology searching. Bioinforma. Oxf. Engl. 2009; 25:3045–3046. PubMed PMC
Davey N.E., Babu M.M., Blackledge M., Bridge A., Capella-Gutierrez S., Dosztanyi Z., Drysdale R., Edwards R.J., Elofsson A., Felli I.C.et al. .. An intrinsically disordered proteins community for ELIXIR. F1000Research. 2019; 8:1753. PubMed PMC
Gray A.J.G., Papadopoulos P., Mičetić I., Hatos A.. Exploiting bioschemas markup to populate IDPcentral. BioHackrXiv. 2021; 10.37044/osf.io/v3jct. DOI