• This record comes from PubMed

Squalene lipotoxicity in a lipid droplet-less yeast mutant is linked to plasma membrane dysfunction

. 2020 Jan ; 37 (1) : 45-62. [epub] 20200105

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Squalene is a naturally occurring triterpene with wide industrial applications. Due to limited natural resources, production of this valuable lipid in yeast is of high commercial relevance. Typically low levels of squalene in yeast can be significantly increased by specific cultivation conditions or genetic modifications. Under normal conditions, excess squalene is stored in lipid droplets (LD), while in a Saccharomyces cerevisiae mutant unable to form LD it is distributed to cellular membranes. We present here the evidence that squalene accumulation in this LD-less mutant treated with squalene monooxygenase inhibitor terbinafine induces growth defects and loss of viability. We show that plasma membrane malfunction is involved in squalene toxicity. We have found that subinhibitory concentrations of terbinafine increased the sensitivity of LD-less mutant to several membrane-active substances. Furthermore, squalene accumulation in terbinafine-treated LD-less cells disturbed the maintenance of membrane potential and increased plasma membrane permeability to rhodamine 6G. LD-less cells treated with terbinafine showed also high sensitivity to osmotic stress. To confirm the causal relationship between squalene accumulation, loss of viability and impaired plasma membrane functions we treated LD-less cells simultaneously with terbinafine and squalene synthase inhibitor zaragozic acid. Reduction of squalene levels by zaragozic acid improved cell growth and viability and decreased plasma membrane permeability to rhodamine 6G in terbinafine-treated LD-less cells. Our results support the hypothesis that plasma membrane malfunction is involved in the mechanisms of squalene lipotoxicity in yeast cells with defective lipid storage.

See more in PubMed

Asadollahi, M. A., Maury, J., Schalk, M., Clark, A., & Nielsen, J. (2010). Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 106(1), 86-96.

Basáñez, G., Goñi, F. M., & Alonso, A. (1998). Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion. Biochemistry, 37(11), 3901-3908. https://doi.org/10.1021/bi9728497

Bolard, J. (1986). How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 864(3-4), 257-304.

Breivik, O. N., & Owades, J. L. (1957). Spectrophotometric semimicrodetermination of ergosterol in yeast. Journal of Agricultural and Food Chemistry, 5(5), 360-363.

Čadek, R., Chládková, K., Sigler, K., & Gášková, D. (2004). Impact of the growth phase on the activity of multidrug resistance pumps and membrane potential of S. cerevisiae: Effect of pump overproduction and carbon source. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1665(1-2), 111-117.

Connerth, M., Czabany, T., Wagner, A., Zellnig, G., Leitner, E., Steyrer, E., & Daum, G. (2010). Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. Journal of Biological Chemistry, 285(35), 26832-26841. https://doi.org/10.1074/jbc.M110.122085

David, M. H., & Kirsop, B. H. (1973). A correlation between oxygen requirements and the products of sterol synthesis in strains of Saccharomyces cerevisiae. Microbiology, 77(2), 529-531.

De Kruijff, B., & Demel, R. A. (1974). Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 339(1), 57-70.

De Nobel, J. G., Klis, F. M., Ram, A., Van Nnen, H., Priem, J., Munnik, T., & Ende, H. V. D. (1991). Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae. Yeast, 7(6), 589-598. https://doi.org/10.1002/yea.320070606

Deutch, C. E., & Parry, J. M. (1974). Sphaeroplast formation in yeast during the transition from exponential phase to stationary phase. Microbiology, 80(1), 259-268.

Donald, K. A., Hampton, R. Y., & Fritz, I. B. (1997). Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 63(9), 3341-3344.

Emter, R., Heese-Peck, A., & Kralli, A. (2002). ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Letters, 521(1-3), 57-61. https://doi.org/10.1016/s0014-5793(02)02818-1

Ferrante, G., Ekiel, I., & Sprott, G. D. (1986). Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. Journal of Biological Chemistry, 261(36), 17062-17066.

Gajkowska, B., Smialek, M., Ostrowski, R. P., Piotrowski, P., & Frontczak-Baniewicz, M. (1999). The experimental squalene encephaloneuropathy in the rat. Experimental and Toxicologic Pathology, 51(1), 75-80. https://doi.org/10.1016/S0940-2993(99)80072-4

Garaiová, M., Zambojová, V., Šimová, Z., Griač, P., & Hapala, I. (2014). Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 14(2), 310-323. https://doi.org/10.1111/1567-1364.12107

Garbarino, J., Padamsee, M., Wilcox, L., Oelkers, P. M., D'Ambrosio, D., Ruggles, K. V., … Sturley, S. L. (2009). Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. Journal of Biological Chemistry, 284(45), 30994-31005. https://doi.org/10.1074/jbc.M109.050443

Garbarino, J., & Sturley, S. L. (2009). Saturated with fat: New perspectives on lipotoxicity. Current Opinion in Clinical Nutriotion Metabolic Care, 12(2), 110-116.

Gášková, D., Brodská, B., Holoubek, A., & Sigler, K. (1999). Factors and processes involved in membrane potential build-up in yeast: diS-C3 (3) assay. The International Journal of Biochemistry and Cell Biology, 31(5), 575-584. https://doi.org/10.1016/s1357-2725(99)00002-3

Gášková, D., Čadek, R., Chaloupka, R., Plášek, J., & Sigler, K. (2001). Factors underlying membrane potential-dependent and-independent fluorescence responses of potentiometric dyes in stressed cells: diS-C3 (3) in yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1511(1), 74-79.

Gilmore, S. F., Yao, A. I., Tietel, Z., Kind, T., Facciotti, M. T., & Parikh, A. N. (2013). Role of squalene in the organization of monolayers derived from lipid extracts of Halobacterium salinarum. Langmuir, 29(25), 7922-7930. https://doi.org/10.1021/la401412t

Goffa, E., Balazfyova, Z., Toth Hervay, N., Simova, Z., Balazova, M., Griac, P., & Gbelska, Y. (2014). Isolation and functional analysis of the KlPDR16 gene. FEMS Yeast Research, 14(2), 337-345.

Gray, K. C., Palacios, D. S., Dailey, I., Endo, M. M., Uno, B. E., Wilcock, B. C., & Burke, M. D. (2012). Amphotericin primarily kills yeast by simply binding ergosterol. Proceedings of the National Academy of Sciences USA, 109(7), 2234-2239.

Gurtovenko, A. A., & Anwar, J. (2007). Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. The Journal of Physical Chemistry B, 111(35), 10453-10460.

Gurtovenko, A. A., & Anwar, J. (2009). Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. The Journal of Physical Chemistry B, 113(7), 1983-1992. https://doi.org/10.1021/jp808041z

Haines, T. H. (2001). Do sterols reduce proton and sodium leaks through lipid bilayers? Progress in Lipid Research, 40(4), 299-324. https://doi.org/10.1016/s0163-7827(01)00009-1

Hauss, T., Dante, S., Dencher, N. A., & Haines, T. H. (2002). Squalane is in the midplane of the lipid bilayer: Implications for its function as a proton permeability barrier. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1556(2-3), 149-154. https://doi.org/10.1016/s0005-2728(02)00346-8

Hendrych, T., Kodedová, M., Sigler, K., & Gášková, D. (2009). Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(3), 717-723. https://doi.org/10.1016/j.bbamem.2008.12.001

Holm, B. C., Svelander, L., Bucht, A., & Lorentzen, J. C. (2002). The arthritogenic adjuvant squalene does not accumulate in joints, but gives rise to pathogenic cells in both draining and non-draining lymph nodes. Clinical and Experimental Immunology, 127(3), 430-435. https://doi.org/10.1046/j.1365-2249.2002.01783.x

Khandelwal, N. K., Sarkar, P., Gaur, N. A., Chattopadhyay, A., & Prasad, R. (2018). Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2308-2319. https://doi.org/10.1016/j.bbamem.2018.05.016

Kodedová, M., Sigler, K., Lemire, B. D., & Gášková, D. (2011). Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. BioTechniques, 50(1), 58-63. https://doi.org/10.2144/000113568

Kodedová, M., & Sychrová, H. (2015). Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS ONE, 10(9), e0139306. https://doi.org/10.1371/journal.pone.0139306

Kodedová, M., Valachovič, M., Csáky, Z., & Sychrová, H. (2019). Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cellular Microbiology, 21(12), e13093. https://doi.org/10.1111/cmi.13093

Kohlwein, S. D. (2010). Obese and anorexic yeasts: Experimental models to understand the metabolic syndrome and lipotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1801(3), 222-229. https://doi.org/10.1016/j.bbalip.2009.12.016

Lockshon, D., Surface, L. E., Kerr, E. O., Kaeberlein, M., & Kennedy, B. K. (2007). The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics, 175(1), 77-91.

Lohner, K., Degovics, G., Laggner, P., Gnamusch, E., & Paltauf, F. (1993). Squalene promotes the formation of non-bilayer structures in phospholipid model membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1152(1), 69-77.

Maesaki, S., Marichal, P., Bossche, H. V., Sanglard, D., & Kohno, S. (1999). Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. Journal of Antimicrobial Chemotherapy, 44(1), 27-31.

Mahoney, C., Pirman, D., Chubukov, V., Sleger, T., Hayes, S., Fan, Z. P., … Smolen, G. A. (2019). A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nature Communications, 10(1), 96.

Mazáň, M., Mazáňová, K., & Farkaš, V. (2008). Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins. Antonie Van Leeuwenhoek, 94(2), 335-342. https://doi.org/10.1007/s10482-008-9228-0

Nováková, Z., Šurín, S., Blaško, J., Majernik, A., & Šmigáň, P. (2008). Membrane proteins and squalene-hydrosqualene profile in methanoarchaeon Methanothermobacter thermautotrophicus resistant to N, N′-dicyclohexylcarbodiimide. Folia Microbiologica, 53(3), 237-240.

Petschnigg, J., Wolinski, H., Kolb, D., Zellnig, G., Kurat, C. F., Natter, K., & Kohlwein, S. D. (2009). Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. Journal of Biological Chemistry, 284(45), 30981-30993. https://doi.org/10.1074/jbc.M109.024752

Pineau, L., & Ferreira, T. (2010). Lipid-induced ER stress in yeast and β cells: Parallel trails to a common fate. FEMS Yeast Research, 10(8), 1035-1045.

Récamier, K. S., Hernández-Gómez, A., González-Damián, J., & Ortega-Blake, I. (2010). Effect of membrane structure on the action of polyenes: I. Nystatin action in cholesterol-and ergosterol-containing membranes. The Journal of Membrane Biology, 237(1), 31-40.

Rego, A., Trindade, D., Chaves, S. R., Manon, S., Costa, V., Sousa, M. J., & Côrte-Real, M. (2014). The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Research, 14(1), 160-178. https://doi.org/10.1111/1567-1364.12096

Richard, V. R., Beach, A., Piano, A., Leonov, A., Feldman, R., Burstein, M. T., … Titorenko, V. (2014). Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle, 13(23), 3707-3726.

Richens, J. L., Lane, J. S., Mather, M. L., & O'Shea, P. (2015). The interactions of squalene, alkanes and other mineral oils with model membranes: Effects on membrane heterogeneity and function. Journal of Colloid and Interface Science, 457, 225-231. https://doi.org/10.1016/j.jcis.2015.06.052

Ryder, N. S. (1992). Terbinafine: Mode of action and properties of the squalene epoxidase inhibition. British Journal of Dermatology, 126, 2-7.

Saito, H., & Posas, F. (2012). Response to hyperosmotic stress. Genetics, 192(2), 289-318.

Sandager, L., Gustavsson, M. H., Ståhl, U., Dahlqvist, A., Wiberg, E., Banas, A., … Stymne, S. (2002). Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry, 277(8), 6478-6482. https://doi.org/10.1074/jbc.M109109200

Sangalli-Leite, F., Scorzoni, L., Mesa-Arango, A. C., Casas, C., Herrero, E., Gianinni, M. J., … Zaragoza, O. (2011). Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes and Infection, 13, 457-467. https://doi.org/10.1016/j.micinf.2011.01.015

Santos, A. X., & Riezman, H. (2012). Yeast as a model system for studying lipid homeostasis and function. FEBS Letters, 586(18), 2858-2867.

Sec, P., Garaiova, M., Gajdos, P., Certik, M., Griac, P., Hapala, I., & Holic, R. (2015). Baker's yeast deficient in storage lipid synthesis uses cis-vaccenic acid to reduce unsaturated fatty acid toxicity. Lipids, 50(7), 621-630. https://doi.org/10.1007/s11745-015-4022-z

Serrano, R. (1988). H+-ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: Purification and reconstitution. In Methods in enzymology, 157 (pp. 533-544). New York: Academic Press.

Siegel, D. P., Banschbach, J., & Yeagle, P. L. (1989). Stabilization of HII phases by low levels of diglycerides and alkanes: An NMR, calorimetric, and x-ray diffraction study. Biochemistry, 28(12), 5010-5019.

Smith, A. E., Zhang, Z., Thomas, C. R., Moxham, K. E., & Middelberg, A. P. (2000). The mechanical properties of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 97(18), 9871-9874.

Sorger, D., Athenstaedt, K., Hrastnik, C., & Daum, G. (2004). A yeast strain lacking lipid particles bears a defect in ergosterol formation. Journal of Biological Chemistry, 279(30), 31190-31196. https://doi.org/10.1074/jbc.M403251200

Spanova, M., Czabany, T., Zellnig, G., Leitner, E., Hapala, I., & Daum, G. (2010). Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 285(9), 6127-6133. https://doi.org/10.1074/jbc.M109.074229

Spanova, M., & Daum, G. (2011). Squalene-Biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology, 113(11), 1299-1320.

Spanova, M., Zweytick, D., Lohner, K., Klug, L., Leitner, E., Hermetter, A., & Daum, G. (2012). Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1821(4), 647-653. https://doi.org/10.1016/j.bbalip.2012.01.015

Terada, H. (1981). The interaction of highly active uncouplers with mitochondria. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 639(3-4), 225-242.

Unger, R. H., & Scherer, P. E. (2010). Gluttony, sloth and the metabolic syndrome: A roadmap to lipotoxicity. Trends in Endocrinology and Metabolism, 21(6), 345-352. https://doi.org/10.1016/j.tem.2010.01.009

Valachovic, M., Garaiova, M., Holic, R., & Hapala, I. (2016). Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis. Biochemical and Biophysical Research Communications, 469(4), 1123-1128.

Valachovič, M., Hronská, L., & Hapala, I. (2001). Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 197(1), 41-45. https://doi.org/10.1111/j.1574-6968.2001.tb10580.x

Vecer, J., Vesela, P., Malinsky, J., & Herman, P. (2014). Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast. FEBS Letters, 588(3), 443-449. https://doi.org/10.1016/j.febslet.2013.11.038

Veen, M., Stahl, U., & Lang, C. (2003). Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Research, 4(1), 87-95. https://doi.org/10.1016/S1567-1356(03)00126-0

Younsi, M., Ramanandraibe, E., Bonaly, R., Donner, M., & Coulon, J. (2000). Amphotericin B resistance and membrane fluidity in Kluyveromyces lactis strains. Antimicrobial Agents and Chemotherapy, 44(7), 1911-1916. https://doi.org/10.1128/aac.44.7.1911-1916.2000

Zhang, Q., Chieu, H. K., Low, C. P., Zhang, S., Heng, C. K., & Yang, H. (2003). Schizosaccharomyces pombe cells deficient in triacylglycerols synthesis undergo apoptosis upon entry into the stationary phase. Journal of Biological Chemistry, 278(47), 47145-47155. https://doi.org/10.1074/jbc.M306998200

Zinser, E., & Daum, G. (1995). Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast, 11(6), 493-536.

Find record

Citation metrics

Loading data ...

    Archiving options