Dynamic range expansion leads to establishment of a new, genetically distinct wolf population in Central Europe
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31831858
PubMed Central
PMC6908625
DOI
10.1038/s41598-019-55273-w
PII: 10.1038/s41598-019-55273-w
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Ecosystem * MeSH
- Genetic Variation MeSH
- Haplotypes genetics MeSH
- Animal Migration physiology MeSH
- Microsatellite Repeats genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Genetics, Population * MeSH
- Cluster Analysis MeSH
- Wolves genetics MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Local extinction and recolonization events can shape genetic structure of subdivided animal populations. The gray wolf (Canis lupus) was extirpated from most of Europe, but recently recolonized big part of its historical range. An exceptionally dynamic expansion of wolf population is observed in the western part of the Great European Plain. Nonetheless, genetic consequences of this process have not yet been fully understood. We aimed to assess genetic diversity of this recently established wolf population in Western Poland (WPL), determine its origin and provide novel data regarding the population genetic structure of the grey wolf in Central Europe. We utilized both spatially explicit and non-explicit Bayesian clustering approaches, as well as a model-independent, multivariate method DAPC, to infer genetic structure in large dataset (881 identified individuals) of wolf microsatellite genotypes. To put the patterns observed in studied population into a broader biogeographic context we also analyzed a mtDNA control region fragment widely used in previous studies. In comparison to a source population, we found slightly reduced allelic richness and heterozygosity in the newly recolonized areas west of the Vistula river. We discovered relatively strong west-east structuring in lowland wolves, probably reflecting founder-flush and allele surfing during range expansion, resulting in clear distinction of WPL, eastern lowland and Carpathian genetic groups. Interestingly, wolves from recently recolonized mountainous areas (Sudetes Mts, SW Poland) clustered together with lowland, but not Carpathian wolf populations. We also identified an area in Central Poland that seems to be a melting pot of western, lowland eastern and Carpathian wolves. We conclude that the process of dynamic recolonization of Central European lowlands lead to the formation of a new, genetically distinct wolf population. Together with the settlement and establishment of packs in mountains by lowland wolves and vice versa, it suggests that demographic dynamics and possibly anthropogenic barriers rather than ecological factors (e.g. natal habitat-biased dispersal patterns) shape the current wolf genetic structure in Central Europe.
APB BirdLife Belarus Engelsa 34A 1 220030 Minsk Belarus
Association for Nature Wolf Twardorzeczka Cynkowa 4 34 324 Lipowa Poland
Faculty of Science Charles University Prague Viničná 7 128 43 Prague Czech Republic
Faculty of Science University of Ostrava Chittussiho 10 170 00 Ostrava Czech Republic
Roztocze National Park Plażowa 2 22 470 Zwierzyniec Poland
State Nature Conservancy of Slovak Republic Tajovského 28B 974 01 Banská Bystrica Slovakia
Tatra National Park Kuźnice 1 34 500 Zakopane Poland
Vytautas Magnus University K Donelaičio 58 44248 Kaunas Lithuania
See more in PubMed
Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. 2009;40:481–501. doi: 10.1146/annurev.ecolsys.39.110707.173414. DOI
Roques L, Garnier J, Hamel F, Klein EK. Allee effect promotes diversity in traveling waves of colonization. Proc. Natl. Acad. Sci. USA. 2012;109:8828–8833. doi: 10.1073/pnas.1201695109. PubMed DOI PMC
Garnier J, Lewis MA. Expansion under climate change: the genetic consequences. Bull. Math. Biol. 2016;78:2165–2185. doi: 10.1007/s11538-016-0213-x. PubMed DOI
Provine, W. B. In: Genetics, Speciation, and the Founder Principle. (ed. Giddings, L. V., Kaneshiro, K. Y., Anderson, W. W.). New York, Oxford Univ. Press. pp. 43–76 (1989).
Broders HG, et al. Population genetic structure and the effect of founder events on the genetic variability of moose, Alces alces, in Canada. Mol. Ecol. 1999;8:1309–15. doi: 10.1046/j.1365-294X.1999.00695.x. PubMed DOI
Clegg SM, et al. Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA. 2002;99:8127–8132. doi: 10.1073/pnas.102583399. PubMed DOI PMC
DeGiorgio M, Jakobsson M, Rosenberg NA. Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl. Acad. Sci. USA. 2009;106:16057–16062. doi: 10.1073/pnas.0903341106. PubMed DOI PMC
Peter BM, Slatkin M. The effective founder effect in a spatially expanding population. Evolution. 2015;69:721–734. doi: 10.1111/evo.12609. PubMed DOI PMC
Świsłocka M, Czajkowska M, Duda N, Ratkiewicz M. Admixture promotes genetic variation in bottlenecked moose populations in eastern Poland. Mamm. Res. 2015;60:169–179. doi: 10.1007/s13364-015-0221-5. DOI
Fischer ML, et al. Multiple founder effects are followed by range expansion and admixture during the invasion process of the raccoon (Procyon lotor) in Europe. Divers. Distrib. 2017;23:409–20. doi: 10.1111/ddi.12538. DOI
Drygala F, et al. Homogenous population genetic structure of the non-native raccoon dog (Nyctereutes procyonoides) in Europe as a result of rapid population expansion. Plos One. 2016;11:e0153098. doi: 10.1371/journal.pone.0153098. PubMed DOI PMC
Ripple WJ, et al. Status and ecological effects of the world’s largest carnivores. Science. 2014;343(6167):1241484. doi: 10.1126/science.1241484. PubMed DOI
Nowak S, Mysłajek RW. Response of the wolf (Canis lupus Linnaeus, 1758) population to various management regimes at the edge of its distribution range in Western Poland, 1951–2012. Appl. Ecol. Env. Res. 2017;15(3):187–203. doi: 10.15666/aeer/1503_187203. DOI
Nowak S, Mysłajek RW. Wolf recovery and population dynamics in Western Poland, 2001–2012. Mamm. Res. 2016;61:83–98. doi: 10.1007/s13364-016-0263-3. DOI
Chapron G, et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346:1517–1519. doi: 10.1126/science.1257553. PubMed DOI
Czarnomska SD, et al. Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian wolves. Conserv. Genet. 2013;14:573–588. doi: 10.1007/s10592-013-0446-2. DOI
Nowak S, et al. Sedentary but not dispersing wolves Canis lupus recolonising Western Poland (2001–2016) conform to the predictions of Habitat Suitability Model. Divers. Distrib. 2017;23:1353–1364. doi: 10.1111/ddi.12621. DOI
Andersen LW, et al. Long-distance dispersal of a wolf, Canis lupus, in northwestern. Europe. Mamm. Res. 2015;60:163–168. doi: 10.1007/s13364-015-0220-6. DOI
Ražen N, et al. Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur. J. Wildlife Res. 2015;62(1):137–142. doi: 10.1007/s10344-015-0971-z. DOI
Hulva P, et al. Wolves at the crossroad: Fission–fusion range biogeography in the Western Carpathians and Central Europe. Divers. Distrib. 2018;24:179–192. doi: 10.1111/ddi.12676. DOI
Pilot M, et al. Ecological factors influence population genetic structure of European grey wolves. Mol. Ecol. 2006;15:4533–4553. doi: 10.1111/j.1365-294X.2006.03110.x. PubMed DOI
Stronen AV, et al. North-south differentiation and a region of high diversity in european wolves (Canis lupus) PLoS One. 2013;10:e76454. doi: 10.1371/journal.pone.0076454. PubMed DOI PMC
Hindrikson M, et al. Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested grey wolf (Canis lupus) population in north-eastern Europe. PLoS One. 2013;8:e75765. doi: 10.1371/journal.pone.0075765. PubMed DOI PMC
Silva P, et al. Cryptic population structure reveals low dispersal in Iberian wolves. Sci. Rep. 2018;8:14108. doi: 10.1038/s41598-018-32369-3. PubMed DOI PMC
Jędrzejewski W, et al. Habitat suitability model for Polish wolves Canis lupus based on long-term national census. Anim. Conserv. 2008;11:377–390. doi: 10.1111/j.1469-1795.2008.00193.x. DOI
Klopfstein S. The fate of mutations surfing on the wave of a range expansion. Mol. Biol. Evol. 2005;23:482–490. doi: 10.1093/molbev/msj057. PubMed DOI
Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol. Evolut. 2008;23:347–351. doi: 10.1016/j.tree.2008.04.004. PubMed DOI
Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002;11:155–165. doi: 10.1046/j.0962-1083.2001.01436.x. PubMed DOI
Pilot M, et al. Phylogeographic history of grey wolves in Europe. BMC Evol. Biol. 2010;10:104. doi: 10.1186/1471-2148-10-104. PubMed DOI PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Kalinowski ST. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: Simulations and implications for human population structure. Heredity. 2011;106:625–632. doi: 10.1038/hdy.2010.95. PubMed DOI PMC
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC
Rodrıguez‐Ramilo ST, Wang J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Eco. Resour. 2012;12:873–884. doi: 10.1111/j.1755-0998.2012.03156.x. PubMed DOI
Pilot M, et al. Genetic variability of the grey wolf Canis lupus in the Caucasus in comparison with Europe and the Middle East: Distinct or intermediary population? PLoS One. 2014;9:e93828. doi: 10.1371/journal.pone.0093828. PubMed DOI PMC
Janes JK, et al. The K = 2 conundrum. Mol. Ecol. 2017;26:3594–3602. doi: 10.1111/mec.14187. PubMed DOI
Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics. 2003;163:1177–91. PubMed PMC
Faubet P, Waples RS, Gaggiotti OE. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 2007;16:1149–1166. doi: 10.1111/j.1365-294X.2007.03218.x.. PubMed DOI
Geffen E, et al. Kin encounter rate and inbreeding avoidance in canids. Mol Ecol. 2011;20:5348–5358. doi: 10.1111/j.1365-294X.2011.05358.x. PubMed DOI
vonHoldt BM, et al. The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol. Ecol. 2008;17:252–274. doi: 10.1111/j.1365-294X.2007.03468.x. PubMed DOI
Bensch S, et al. Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One. 2006;1:e72–e77. doi: 10.1371/journal.pone.0000072. PubMed DOI PMC
Galaverni M, et al. Choosy wolves? Heterozygote advantage but no evidence of MHC-based disassortative mating. J Hered. 2016;107:134–42. doi: 10.1093/jhered/esv090. PubMed DOI PMC
Huck M, et al. Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriol. 2010;55:177–192. doi: 10.4098/j.at.0001-7051.114.2009. DOI
Carson, H. L. The population flush and its genetic consequences. In: Population biology and evolution (ed. Lewontin, R. C.) Syracuse University Press, Syracuse, NY, pp. 123–137 (1968).
Graciá E, et al. Surfing in tortoises? Empirical signs of genetic structuring owing to range expansion. Bio.l Let. 2013;9:20121091. doi: 10.1098/rsbl.2012.1091. PubMed DOI PMC
Graciá E, et al. Genetic signatures of demographic changes in an avian top predator during the last century: Bottlenecks and expansions of the Eurasian Eagle Owl in the Iberian Peninsula. PLoS One. 2015;10:e0133954. doi: 10.1371/journal.pone.0133954. PubMed DOI PMC
Pereira P, Teixeira J, Velo-Antón G. Allele surfing shaped the genetic structure of the European pond turtle via colonization and population expansion across the Iberian Peninsula from Africa. J. Biogeogr. 2018;45:2202–2215. doi: 10.1111/jbi.13412.. DOI
White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: The invasive bank vole (Myodes glareolus) in Ireland. Mol. Ecol. 2013;22:2971–2985. doi: 10.1111/mec.12343. PubMed DOI
Shine R, Brown GP, Phillips BL. An evolutionary process that assembles phenotypes through space rather than through time. Proc.Nat. Acad. Sci. USA. 2011;108:5708–5711. doi: 10.1073/pnas.1018989108. PubMed DOI PMC
Lesniak I, et al. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population. Sci. Rep. 2017;7:41730. doi: 10.1038/srep41730. PubMed DOI PMC
Jędrzejewski W, Niedziałkowsk AM, Nowak S, Jędrzejewska B. Habitat variables associated with wolf (Canis lupus) distribution and abundance in northern Poland. Divers. Distrib. 2004;10:225–233. doi: 10.1111/j.1366-9516.2004.00073.x. DOI
Huck M, et al. Analyses of least cost paths for determining effects of habitat types on landscape permeability: wolves in Poland. Acta Theriol. 2011;56:91–101. doi: 10.1007/s13364-010-0006-9. PubMed DOI PMC
Nowak S, Mysłajek RW, Kłosińska A, Gabryś G. Diet and prey selection of wolves Canis lupus recolonising Western and Central Poland. Mamm. Biol. 2011;76:709–715. doi: 10.1016/j.mambio.2011.06.007. DOI
Flousek J, et al. Velké šelmy (Carnivora) v Krkonoších, Jizerskýchhorách, Górach Stołowych a na Broumovsku (Česká republika, Polsko) – minulost a přítomnost. Opera Corcontica. 2014;51:37–59.
Kondracki J. Types of natural landscape (geographical environment) in Poland. Polish. Geographical Review. 1960;32(Suppl):29–39.
Jędrzejewski W, Niedziałkowska M, Mysłajek RW, Nowak S, Jędrzejewska B. Habitat selection by wolves Canis lupus in the uplands and mountains of southern Poland. Acta Theriol. 2005;50:417–428. doi: 10.1007/BF03192636. DOI
Waters JM, Fraser CI, Hewitt GM. Founder takes all: Density‐dependent processes structure biodiversity. Trends Ecol. Evolut. 2013;28:78–85. doi: 10.1016/j.tree.2012.08.024.. PubMed DOI
Funk WC, Mckay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 2012;27:489–496. doi: 10.1016/j.tree.2012.05.012. PubMed DOI PMC
Palsbøll PJ, Bérubé M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol. Evol. 2007;22:11–16. doi: 10.1016/j.tree.2006.09.003. PubMed DOI
Taylor BL, Dizon AE. First policy then science: why a management unit based solely on genetic criteria cannot work. Mol. Ecol. 1999;8(Suppl. 1):S11–S16. doi: 10.1046/j.1365-294X.1999.00797.x. PubMed DOI
Linnell, J., Salvatori, V. & Boitani, L. Guidelines for population level management plans for large carnivores in Europe. A Large Carnivore Initiative for Europe. Report Prepared for the European Commission. Available at, http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/guidelines for population level management.pdf (2008).
Boitani, L. Canis lupus. The IUCN Red List of Threatened Species 2018: e.T3746A133234888. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T3746A133234888.en. Downloaded on 05 January 2019. (2018).
Boitani, L. et al. Key actions for large carnivore populations in Europe. Institute of Applied Ecology (Rome, Italy). Report to DG Environment, European Commission, Bruxelles. (2015).
Moritz CD. ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 1994;9:373–375. doi: 10.1016/0169-5347(94)90057-4. PubMed DOI
Jędrzejewski W, et al. Prey choice and diet of wolves related to ungulate communities and wolf subpopulations in Poland. J. Mammal. 2012;93:1480–1492. doi: 10.1644/10-MAMM-A-132.1. DOI
Angelstam P, et al. Green infrastructure development at European Union’s eastern border: effects of road infrastructure and forest habitat loss. J. Environ. Manage. 2017;193:300–311. doi: 10.1016/j.jenvman.2017.02.017. PubMed DOI
Ceia-Hasse A, Borda-de-Água L, Grilo C, Pereira HM. Global exposure of carnivores to roads. Glob. Ecol. Biogeogr. 2017;26:592–600. doi: 10.1111/geb.12564. DOI
Taberlet P, Bouvet J. Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in. Europe. P. Roy. Soc. B-Biol. Sci. 1994;255:195–200. doi: 10.1098/rspb.1994.0028. PubMed DOI
Fumagalli L, Taberlet P, Favre L, Hausser J. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol. Biol. Evol. 1996;13:31–46. doi: 10.1093/oxfordjournals.molbev.a025568. PubMed DOI
Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm. Genome. 1996;7:359–362. doi: 10.1007/s003359900104. PubMed DOI
Shibuya H, Collins BK, Huang THM, Johnson GS. A polymorphic (AGGAAT)(N) tandem repeat in an intron of the canine Von Willebrand-factor gene. Anim. Genet. 1994;25:122–122. doi: 10.1111/j.1365-2052.1994.tb00094.x. PubMed DOI
Neff MW, et al. A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics. 1999;151:803–820. PubMed PMC
Fredholm M, Wintero AK. Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm. Genome. 1995;6:11–18. doi: 10.1007/Bf00350887. PubMed DOI
Seddon J. Canid-specific primers for molecular sexing using tissue or noninvasive samples. Conserv. Genet. 2005;6:147–149. doi: 10.1007/s10592-004-7734-9. DOI
Taberlet P, et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24:3189–3194. doi: 10.1093/nar/24.16.3189. PubMed DOI PMC
Scandura M, Capitani C, Iacolina L, Apollonio M. An empirical approach for reliable microsatellite genotyping of wolf DNA from multiple non-invasive sources. Conserv. Genet. 2006;7:813–823. doi: 10.1007/s10592-005-9106-5. DOI
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Van Oosterhout C, Hutchinson WF, Wills PM, Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Goudet J. FSTAT (Version 1.2): A computer program to calculate F- statistics. J. Hered. 1995;86:485–486. doi: 10.1093/oxfordjournals.jhered.a111627. DOI
Lynch M, Ritland K. Estimation of pairwise relatedness with molecular markers. Genetics. 1999;152:1753–1766. PubMed PMC
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI
Jones, O. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. doi: 0.1111/j.1755-0998.2009.02787.x (2010) PubMed
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–91. doi: 10.1111/1755-0998.12387. PubMed DOI PMC
Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI
Harris LN, Moore J-S, Galpern P, Tallman RF, Taylor EB. Geographic influences on fine-scale, hierarchical population structure in northern Canadian populations of anadromous Arctic Char (Salvelinus alpinus) Environ. Biol. Fishes. 2014;97:1233–1252. doi: 10.1007/s10641-013-0210-y. DOI
Pisa G, et al. Detecting a hierarchical genetic population structure: the case study of the Fire Salamander (Salamandra salamandra) in Northern Italy Ecol. Evol. 2015;5:743–758. doi: 10.1002/ece3.1335. PubMed DOI PMC
Guillot G, Santos F, Estoup A. Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics. 2008;24:1406–1407. doi: 10.1093/bioinformatics/btn136. PubMed DOI
Guillot, G. Population genetic and morphometric data analysis using R and the Geneland program. Available at, http://www2.imm.dtu.dk/~gigu/Geneland/Geneland-Doc.pdf (2012)
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI