Water Absorption Properties of Geopolymer Foam after Being Impregnated with Hydrophobic Agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.01.1.02/0.0/0.0/16_084/0010282
Ministry of Industry and Trade in the framework of the targeted support of the "Application III
PubMed
31835816
PubMed Central
PMC6947174
DOI
10.3390/ma12244162
PII: ma12244162
Knihovny.cz E-zdroje
- Klíčová slova
- Lukofob ELX, Lukosil M130, compressive strength, flexural strength, geopolymer foam, water absorption, water absorption coefficient, water uptake,
- Publikační typ
- časopisecké články MeSH
Geopolymer foam is classified as a lightweight material with high porous in its matrix which has great offer for applications requiring fire-resistant, thermal, and acoustic properties. However, the high sensitivity to humid environments can be a major barrier of geopolymer foam that limits the variety of applications of this material. Based on this drawback, two types of hydrophobic agent (Lukosil M130 and Lukofob ELX) were used as an impregnator to treat the surface of geopolymer foam samples. This paper presented the results of water absorption properties of the untreated and treated geopolymer foam composites. The obtained properties were flexural strength, compressive strength, density, total water absorption, the rate of water absorption, and water absorption coefficient. The results showed that the samples after being impregnated with hydrophobic agents improved significantly their waterproof property especially using Lukosil M130. Moreover, the samples treated with Lukosil M130 had positive impact on their mechanical strength.
Zobrazit více v PubMed
Davidovits J. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 2017;8:335–350.
Da Silva Rocha T., Dias D.P., França F.C.C., de Salles Guerra R.R., de Oliveira L.R.D.C. Metakaolin-based geopolymer mortars with different alkaline activators. Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI
Hemalatha T., Mapa M., George N., Sasmal S. Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement. J. Clean. Prod. 2016;125:268–281. doi: 10.1016/j.jclepro.2016.03.118. DOI
Yu X., Chen L., Komarneni S., Hui C. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016;125:253–267.
Barbosa V.F.F., MacKenzie K.J.D., Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000;2:309–317. doi: 10.1016/S1466-6049(00)00041-6. DOI
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Duan P., Yan C., Zhou W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 2017;78:108–119. doi: 10.1016/j.cemconcomp.2017.01.009. DOI
Allahverdi A.L.I. Sulfuric Acid Attack on Hardened Paste of Geopolymer Cements Part 2. Corrosion Mechanism At Mild and Relatively Low Concentrations. Ceram. Silik. 2005;4:3–6.
Allahverdi A., Škvára F. Sulfuric acid attack on hardened paste of geopolymer cements Part 2. Corrosion mechanism at mild and relatively low concentrations. Ceram. Silik. 2006;50:1–4.
Ramujee K., Potharaju M. Abrasion Resistance of Geopolymer Composites. Procedia Mater. Sci. 2014;6:1961–1966. doi: 10.1016/j.mspro.2014.07.230. DOI
Degirmenci F.N. Freeze-Thaw and Fire Resistance of Geopolymer Mortar Based on Natural and Waste Pozzolans. Ceram. Silik. 2017;62:1–9. doi: 10.13168/cs.2017.0043. DOI
Kong D.L.Y., Sanjayan J.G. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 2010;40:334–339. doi: 10.1016/j.cemconres.2009.10.017. DOI
Chindaprasirt P., Rattanasak U. Fire-resistant geopolymer bricks synthesized from high-calcium fly ash with outdoor heat exposure. Clean Technol. Environ. Policy. 2018;20:1097–1103. doi: 10.1007/s10098-018-1532-4. DOI
Meyer C. The greening of the concrete industry. Cem. Concr. Compos. 2009;31:601–605. doi: 10.1016/j.cemconcomp.2008.12.010. DOI
Verian K.P., Behnood A. Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials. Cem. Concr. Compos. 2018;90:27–41. doi: 10.1016/j.cemconcomp.2018.03.009. DOI
Rickard W.D.A., van Riessen A. Cement & Concrete Composites Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire. Cem. Concr. Compos. 2014;48:75–82.
Zhang Z., Provis J.L., Reid A., Wang H. Cement & Concrete Composites Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015;62:97–105.
Hýsek Š., Frydrych M., Herclík M., Louda P., Fridrichová L., Le Van S., Le Chi H. Fire-resistant sandwich-structured composite material based on alternative materials and its physical and mechanical properties. Materials. 2019;12:1432. doi: 10.3390/ma12091432. PubMed DOI PMC
Van S., Hájková P., Kovacic V., Bakalova T., Lukáš V., Le C.H., Seifer K.C., Peres A.P., Louda P. Thermal Conductivity of Reinforced. Ceram. Silik. 2019;63:365–373.
Soltan H., Abdel-gawwad H.A., García S.R.V., Israde-alcántara I. Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Manag. 2018;80:235–240. PubMed
Leiva C., Arenas C. A porous geopolymer based on aluminum-waste with acoustic properties. Waste Manag. 2019;95:504–512. doi: 10.1016/j.wasman.2019.06.042. PubMed DOI
Duan P., Song L., Yan C., Ren D., Li Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 2017;43:5115–5120. doi: 10.1016/j.ceramint.2017.01.025. DOI
Yong M., Liu J., Alengaram U.J., Jumaat M.Z., Mo K.H. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 2014;72:238–245.
En B. Definitions, Requirements, Quality Control and Evaluation of Conformity—Part 2: Surface Protection Systems for Concrete. Volume 3 British Standard; London, UK: 2004. Products and systems for the protection and repair of concrete structures. International standard EN 1504-2:2004.
a. s. Lučební závody. [(accessed on 15 November 2019)]; Lukosil M130. Available online: https://www.lucebni.cz/cs/lukosil/85-silikonovy-lak-lukosil-m-130.html.
a. s. Lučební závody. [(accessed on 15 November 2019)]; Lukofob ELX. Available online: https://www.lucebni.cz/cs/lukofob/70-hydrofobizacni-pripravek-lukofob-elx.html.
En B.S. Methods of Testing Cement—Part 1: Determination of Strength. Volume 169. European Committee for Standardization; Brussels, Belgium: 2005. p. 36.
Bogas J.A., Glo M., Real S. Capillary absorption of structural lightweight aggregate concrete. Mater. Struct. 2015;48:2869–2883. doi: 10.1617/s11527-014-0364-x. DOI