Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VI20172019055
Ministry of interior Czech Republic
PubMed
31052544
PubMed Central
PMC6540182
DOI
10.3390/ma12091432
PII: ma12091432
Knihovny.cz E-zdroje
- Klíčová slova
- composite material, geopolymer, rapeseed, reinforcing lattice, sandwich panel,
- Publikační typ
- časopisecké články MeSH
The development of composite materials from alternative raw materials, and the design of their properties for the intended purpose is an integral part of the rational management of raw materials and waste recycling. The submitted paper comprehensively assesses the physical and mechanical properties of sandwich composite material made from particles of winter rapeseed stalks, geopolymer and reinforcing basalt lattices. The developed composite panel is designed for use as a filler in constructions (building or building joinery). The observed properties were: bending characteristics, internal bonding, thermal conductivity coefficient and combustion characteristics. The results showed that the density of the particleboard has a significant effect on the resulting mechanical properties of the entire sandwich panel. On the contrary, the density of the second layer of the sandwich panel, geopolymer, did not have the same influence on its mechanical properties as the density of the particleboard. The basalt fibre reinforcement lattice positively affected the mechanical properties of sandwich composites only if it was sufficiently embedded in the structure of the particle board. All of the manufactured sandwich composites resisted flame for more than 13 min and the fire resistance was positively affected by the density of the geopolymer layer.
Zobrazit více v PubMed
Marcari G., Basili M., Vestroni F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos. Part B. 2017;108:131–142. doi: 10.1016/j.compositesb.2016.09.094. DOI
Raj S., Kumar V.R., Kumar B.H.B., Lyer N.R. Basalt: Structural insight as a construction material. Sādhanā. 2017;42:75–84.
Sim J., Park C., Moon D.J. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005;36:504–512. doi: 10.1016/j.compositesb.2005.02.002. DOI
Behera P., Baheti V., Militky J., Louda P. Elevated temperature properties of basalt microfibril filled geopolymer composites. Constr. Build. Mater. 2018;163:850–860. doi: 10.1016/j.conbuildmat.2017.12.152. DOI
Di Ludovico M., Prota A., Manfredi G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010;14:541–552. doi: 10.1061/(ASCE)CC.1943-5614.0000114. DOI
Pernica D., Reis P.N.B., Ferreira J.A.M., Louda P. Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J. Mater. Sci. 2010;45:744–749. doi: 10.1007/s10853-009-3994-6. DOI
Nguyen T.X., Louda P., Kroisova D., Kovacic V., Chi H.L., Vu N.L. Effects of Commercial Fibers Reinforced on the Mechanical Properties of Geopolymer Mortar. Chemické Listy. 2012;106:560–563.
Le Chi H., Louda P. Experimental Investigation of Four-Point Flexural Behavior of Textile Reinforcement in Geopolymer Mortar. Int. J. Eng. Technol. 2019;11:10–15. doi: 10.7763/IJET.2019.V11.1115. DOI
Zheng Y.Z., Wang W.W., Brigham J.C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC. Constr. Build. Mater. 2016;115:424–437. doi: 10.1016/j.conbuildmat.2016.04.038. DOI
Mezrea P.E., Yilmaz I.A., Ispir M., Binbir E. External Jacketing of Unreinforced Historical Masonry Piers with Open-Grid Basalt-Reinforced Mortar. J. Compos. Constr. 2017;21:4016110. doi: 10.1061/(ASCE)CC.1943-5614.0000770. DOI
Ismail N., El-Maaddawy T., Khattak N., Najmal A. In-Plane Shear Strength Improvement of Hollow Concrete Masonry Panels using a Fabric-Reinforced Cementitious Matrix. J. Compos. Constr. 2018;22:4018004. doi: 10.1061/(ASCE)CC.1943-5614.0000835. DOI
Szczypinski M.M., Louda P., Exnar P., Le Chi H., Kovačič V., Van Su L., Voleský L., Bayhan E., Bakalova T. Evaluation of mechanical properties of composite geopolymer blocks reinforced with basalt fibres. Manuf. Technol. 2018;18:861–865. doi: 10.21062/ujep/191.2018/a/1213-2489/MT/18/5/861. DOI
Eurostat . Agriculture, Forestry and Fishery Statistics. Publications Office of the European Union; Luxembourg: 2015.
Klímek P., Wimmer R. Alternative Raw Materials for Bio-Based Composites; Proceedings of the International Conference Wood Science and Engineering in the Third Millennium; Brasov, Rumania. 2–4 November 2017.
Haq F., Ali H., Shuaib M., Badshah M., Hassan S.W., Munis M.F.H., Chaudhary H.J. Recent progress in bioethanol production from lignocellulosic materials: A review. Int. J. Green Energy. 2016;13:1413–1441. doi: 10.1080/15435075.2015.1088855. DOI
Hýsek Š., Gaff M., Sikora A., Babiak M. New composite material based on winter rapeseed and his elasticity properties as a function of selected factors. Compos. Part B Eng. 2018;153:108–116. doi: 10.1016/j.compositesb.2018.07.042. DOI
Dukarska D., Czarnecki R., Dziurka D., Mirski R. Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin. Eur. J. Wood Wood Prod. 2017;75:175–184. doi: 10.1007/s00107-016-1143-x. DOI
Gajdačová P., Hýsek Š., Jarský V. Utilisation of winter rapeseed in wood based materials as a solution of wood shortage and forest protection. Bioresources. 2018;13:2546–2561. doi: 10.15376/biores.13.2.2546-2561. DOI
Timakul P., Rattanaprasit W., Aungkavattana P. Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram. Int. 2016;42:6288–6295. doi: 10.1016/j.ceramint.2016.01.014. DOI
Zhang L., Zhang F., Liu M., Hu X. Novel sustainable geopolymer based syntactic foams: An eco-friendly alternative to polymer based syntactic foams. Chem. Eng. J. 2017;313:74–82. doi: 10.1016/j.cej.2016.12.046. DOI
Zhang Z., Provis J.L., Reid A., Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015;62:97–105. doi: 10.1016/j.cemconcomp.2015.03.013. DOI
Toniolo N., Boccaccini A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017;43:14545–14551. doi: 10.1016/j.ceramint.2017.07.221. DOI
Velenturf A.P.M., Purnell P., Tregent M., Ferguson J., Holmes A. Co-Producing a Vision and Approach for the Transition towards a Circular Economy: Perspectives from Government Partners. Sustainability. 2018;10:1401. doi: 10.3390/su10051401. DOI
Kidalova L., Stevulova N., Terpakova E., Sicakova A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012;34:116–119. doi: 10.1016/j.jclepro.2012.01.031. DOI
Hýsek Š., Podlena M., Bartsch H., Wenderdel C., Böhm M. Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Ind. Crops Prod. 2018;125:105–113. doi: 10.1016/j.indcrop.2018.08.035. DOI
EN 323:1993—Wood-Based Panels. Determination of Density. Eur. Comm. for Stand.; Brussels, Belgium: 1993.
EN 319:1993—Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board. Eur. Comm. for Stand.; Brussels, Belgium: 1993.
EN 798:2004—Timber Structures—Test Methods—Determination of Mechanical Properties of Wood Based Panels. Eur. Comm. for Stand.; Brussels, Belgium: 2004.
Gaff M., Vokatý V., Babiak M., Bal B. Coefficient of wood bendability as a function of selected factors. Constr. Build. Mater. 2016;126:632–640. doi: 10.1016/j.conbuildmat.2016.09.085. DOI
Neuberger P., Kic P. The use of unsteady method for determination of thermal conductivity of porous construction materials in real conditions. Agron. Res. 2017;15:1119–1126.
EN 1363-2:1999—Fire Resistance Tests. Alternative and Additional Procedures. Eur. Comm. for Stand.; Brussels, Belgium: 1999.
Wong E.D., Zhang M., Wang Q., Kawai S. Formation of the density profile and its effects on the properties of particleboard. Wood Sci. Technol. 1999;33:327–340. doi: 10.1007/s002260050119. DOI
Hegazy S., Ahmed K. Effect of Date Palm Cultivar, Particle Size, Panel Density and Hot Water Extraction on Particleboards Manufactured from Date Palm Fronds. Agricult. 2015;5:267–285. doi: 10.3390/agriculture5020267. DOI
Nguyen D.M., Grillet A.C., Diep T.M.H., Thuc C.N.H., Woloszyn M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr. Build. Mater. 2017;155:852–866. doi: 10.1016/j.conbuildmat.2017.08.075. DOI
Wong E.D., Yang P., Zhang M., Wang Q., Nakao T., Li K.F., Kawai S. Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM) Holz als Roh- und Werkstoff. 2003;61:66–72. doi: 10.1007/s00107-002-0350-9. DOI
Gaff M., Gašparík M., Borůvka V., Haviarová E. Stress simulation in layered wood-based materials under mechanical loading. Mater. Des. 2015;87:1065–1071. doi: 10.1016/j.matdes.2015.08.128. DOI
Gaff M., Hýsek Š., Sikora A., Babiak M. Newly developed boards made from crushed rapeseed stalk and their bendability properties. BioResources. 2018;13:4776–4794.
Wong E.D., Zhang M., Wang Q., Kawai S. Effects of mat moisture content and press closing speed on the formation of density profile and properties of particleboard. J. Wood Sci. 1998;44:287–295. doi: 10.1007/BF00581309. DOI
Asdrubali F., D’Alessandro F., Schiavoni S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015;4:1–17. doi: 10.1016/j.susmat.2015.05.002. DOI
Raji S., Jannot Y., Lagière P., Puiggali J.R. Thermophysical characterization of a 377 laminated solid-wood pine wall. Constr. Build. Mater. 2009;23:3189–3195. doi: 10.1016/j.conbuildmat.2009.06.015. DOI
Kamseu E., Nait-Ali B., Bignozzi M.C., Leonelli C., Rossignol S., Smith D.S. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 2012;32:1593–1603. doi: 10.1016/j.jeurceramsoc.2011.12.030. DOI
Vickers L., Pan Z., Tao Z., van Riessen A. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites. Materials. 2016;9:445. doi: 10.3390/ma9060445. PubMed DOI PMC
Sakkas K., Sofianos A., Nomikos P., Panias D. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents. Materials. 2015;8:6096–6104. doi: 10.3390/ma8095294. PubMed DOI PMC
Water Absorption Properties of Geopolymer Foam after Being Impregnated with Hydrophobic Agents